Answer:
14.7 m/s
Explanation:
a = acceleration experienced by driver's head = 50 g = 50 x 9.8 m/s² = 490 m/s²
v₀ = initial speed of the driver = 0 m/s
v = final speed of the driver after 30 ms
t = time interval for which the acceleration is experienced = 30 ms = 0.030 s
Using the equation
v = v₀ + a t
Inserting the values
v = 0 + (490) (0.030)
v = 14.7 m/s
Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km
Answer:

Explanation:
First of all, we need to find the volume of the room, which is given by

Now we can find the mass of the air by using

where
is the density of the air
is the volume of the room
Substituting,

Ordinary cells can convert chemical energy to electrical energy only, but rechargeable cells can also store electrical energy into chemical energy and vice versa. You will study more about it in your higher classes. secondary cells can be recharged and used again but dry cells cannot be recharged.
Answer:
The magnitude of the acceleration of the car is 35.53 m/s²
Explanation:
Given;
acceleration of the truck,
= 12.7 m/s²
mass of the truck,
= 2490 kg
mass of the car,
= 890 kg
let the acceleration of the car at the moment they collided = 
Apply Newton's third law of motion;
Magnitude of force exerted by the truck = Magnitude of force exerted by the car.
The force exerted by the car occurs in the opposite direction.

Therefore, the magnitude of the acceleration of the car is 35.53 m/s²