L = 1.00 m, the original length
A = 0.5 mm² = 0.5 x 10⁻⁶ m², the cross sectional area
E = 2.0 x 10¹¹ n/m², Young's modulus
P = 1500 N, the applied tension
Calculate the stress.
σ = P/A = (1500 N)/(0.5 x 10⁻⁶ m²) = 3 x 10⁹ N/m²
Let δ = the stretch of the string.
Then the strain is
ε = δ/L
By definition, the strain is
ε = σ/E = (3 x 10⁹ N/m²)/(2 x 10¹¹ N/m²) = 0.015
Therefore
δ/(1 m) = 0.015
δ = 0.015 m = 15 mm
Answer: 15 mm
The average speed would have to be 260 km/hr due to the driver originally going 30 km/hr too slow the first two laps
Answer: Mass of the planet, M= 8.53 x 10^8kg
Explanation:
Given Radius = 2.0 x 106m
Period T = 7h 11m
Using the third law of kepler's equation which states that the square of the orbital period of any planet is proportional to the cube of the semi-major axis of its orbit.
This is represented by the equation
T^2 = ( 4π^2/GM) R^3
Where T is the period in seconds
T = (7h x 60m + 11m)(60 sec)
= 25860 sec
G represents the gravitational constant
= 6.6 x 10^-11 N.m^2/kg^2 and M is the mass of the planet
Making M the subject of the formula,
M = (4π^2/G)*R^3/T^2
M = (4π^2/ 6.6 x10^-11)*(2×106m)^3(25860s)^2
Therefore Mass of the planet, M= 8.53 x 10^8kg
Answer:
v_f = 17.4 m / s
Explanation:
For this exercise we can use conservation of energy
starting point. On the hill when running out of gas
Em₀ = K + U = ½ m v₀² + m g y₁
final point. Arriving at the gas station
Em_f = K + U = ½ m v_f ² + m g y₂
energy is conserved
Em₀ = Em_f
½ m v₀ ² + m g y₁ = ½ m v_f ² + m g y₂
v_f ² = v₀² + 2g (y₁ -y₂)
we calculate
v_f ² = 20² + 2 9.8 (10 -15)
v_f = √302
v_f = 17.4 m / s
Answer:
The moon region
Explanation:
This is because there is little to no gravity on the moon. That is where the astronaut would feel the lightest.