To solve this problem it is necessary to apply the concepts related to Young's Module and its respective mathematical and modular definitions. In other words, Young's Module can be expressed as

Where,
F = Force/Weight
A = Area
= Compression
= Original Length
According to the values given we have to




Replacing this values at our previous equation we have,



Therefore the Weight of the object is 3.82kN
acceleration of rocket is given here as

now we know that

now integrating both sides



here since its given that rocket will accelerate for t = 10 s
so here we have


so after t = 10 s the speed of rocket will be 130 m/s upwards
Answer:
The maximum speed of the car at the bottom of that drop is 26.34 m/s.
Explanation:
Given that,
The maximum vertical distance covered by the roller coaster, h = 35.4 m
We need to find the maximum speed of the car at the bottom of that drop. It is a case of conservation of energy. The energy at bottom is equal to the energy at top such that :



v = 26.34 m/s
So, the maximum speed of the car at the bottom of that drop is 26.34 m/s. Hence, this is the required solution.
Answer:
R₂ / R₁ = D / L
Explanation:
The resistance of a metal is
R = ρ L / A
Where ρ is the resistivity of aluminum, L is the length of the resistance and A its cross section
We apply this formal to both configurations
Small face measurements (W W)
The length is
L = W
Area
A = W W = W²
R₁ = ρ W / W² = ρ / W
Large face measurements (D L)
Length L = D= 2W
Area A = W L
R₂ = ρ D / WL = ρ 2W / W L = 2 ρ/L
The relationship is
R₂ / R₁ = 2W²/L
Answer:
<em>0.45 mm</em>
Explanation:
The complete question is
a certain fuse "blows" if the current in it exceeds 1.0 A, at which instant the fuse melts with a current density of 620 A/ cm^2. What is the diameter of the wire in the fuse?
A) 0.45 mm
B) 0.63 mm
C.) 0.68 mm
D) 0.91 mm
Current in the fuse is 1.0 A
Current density of the fuse when it melts is 620 A/cm^2
Area of the wire in the fuse = I/ρ
Where I is the current through the fuse
ρ is the current density of the fuse
Area = 1/620 = 1.613 x 10^-3 cm^2
We know that 10000 cm^2 = 1 m^2, therefore,
1.613 x 10^-3 cm^2 = 1.613 x 10^-7 m^2
Recall that this area of this wire is gotten as
A = 
where d is the diameter of the wire
1.613 x 10^-7 = 
6.448 x 10^-7 = 3.142 x 
=
d = 4.5 x 10^-4 m = <em>0.45 mm</em>