answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AleksAgata [21]
2 years ago
11

A race car driver must average 200km/hr for four laps to qualify for a race. Because of engine trouble, the car averages only 17

0km/hr over the first two laps. What is the average speed must be maintained for the last two laps
Physics
1 answer:
vampirchik [111]2 years ago
5 0
The average speed would have to be 260 km/hr due to the driver originally going 30 km/hr too slow the first two laps
You might be interested in
A wooden disk of mass m and radius r has a string of negligible mass is wrapped around it. If the disk is allowed to fall and th
Tju [1.3M]

Answer:

a = \frac{2}{3}g

T = \frac{mg}{3}

Explanation:

As the disc is unrolling from the thread then at any moment of the time

We have force equation as

mg - T = ma

also by torque equation we can say

TR = I\alpha

TR = \frac{1}{2}mR^2(\frac{a}{R})

T = \frac{1}{2}ma

Now we have

mg - \frac{1}{2}ma = ma

mg = \frac{3}{2}ma

a = \frac{2}{3}g

Also from above equation the tension force in the string is

T = \frac{1}{2}ma

T = \frac{mg}{3}

7 0
2 years ago
Some of the fastest dragsters (called "top fuel) do not race for more than 300-400m for safety reasons. Consider such a dragster
Masja [62]

Answer:

1.10261 times g

416.17506 mph

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

g = Acceleration due to gravity = 9.81 m/s²

s=ut+\frac{1}{2}at^2\\\Rightarrow 400=0\times 8.6+\frac{1}{2}\times a\times 8.6^2\\\Rightarrow a=\frac{400\times 2}{8.6^2}\\\Rightarrow a=10.81665\ m/s^2

Dividing by g

\dfrac{a}{g}=\dfrac{10.81665}{9.81}\\\Rightarrow \dfrac{a}{g}=1.10261\\\Rightarrow a=1.10261g

The acceleration is 1.10261 times g

v^2-u^2=2as\\\Rightarrow v=\sqrt{2as+u^2}\\\Rightarrow v=\sqrt{2\times 10.81665\times 1.6\times 10^3+0^2}\\\Rightarrow v=186.04644\ m/s

In mph

186.04644\times \dfrac{3600}{1609.34}=416.17506\ mph

The speed of the dragster is 416.17506 mph

5 0
2 years ago
You start with spring that's already been stretched an unknown amount from equilibrium. After stretching it an additional 2.0 cm
maxonik [38]

Answer: 35*10^3 N/m

Explanation: In order to explain this problem we know that the potential energy for spring is given by:

Up=1/2*k*x^2 where k is the spring constant and x is the streching or compresion position from the equilibrium point for the spring.

We  also know that with additional streching of 2 cm of teh spring,  the potential energy is 18J. Then it applied another additional streching of 2 cm and the energy is 25J.

Then the difference of energy for both cases is 7 J so:

ΔUp= 1/2*k* (0.02)^2 then

k=2*7/(0.02)^2=35000 N/m

7 0
2 years ago
An archer draws her bow and stores 34.8 J of elastic potential energy in the bow. She releases the 63 g arrow, giving it an init
elena-14-01-66 [18.8K]

Answer:

Approximately 71\%.

Explanation:

The formula for the kinetic energy \rm KE of an object is:

\displaystyle \mathrm{KE} = \frac{1}{2}\, m \cdot v^2,

where

  • m is the mass of that object, and
  • v is the speed of that object.

Important: Joule (\rm J) is the standard unit for energy. The formula for \rm KE requires two inputs: mass and speed. The standard unit of mass is \rm kg while the standard unit for speed is \rm m \cdot s^{-1}. If both inputs are in standard units, then the output (kinetic energy) will also be in the standard unit (that is: joules,

Convert the unit of the arrow's mass to standard unit:

m = 63\; \rm g = 0.063\; \rm kg.

Initial \rm KE of this arrow:

\begin{aligned}\mathrm{KE} &= \frac{1}{2} \, m \cdot v^2 \\ &= \frac{1}{2}\times 0.063\; \rm kg \times \left(\rm 28 \; m \cdot s^{-1}\right)^2 \\ &\approx 24.696\; \rm J\end{aligned}.

That's the same as the energy output of this bow. Hence, the efficiency of energy transfer will be:

\displaystyle \frac{24.696\; \rm J}{34.8\; \rm J} \times 100\% \approx 71\%.

8 0
2 years ago
A boy uses a slingshot to launch a pebble straight up into the air. The pebble reaches a height of 37.0 m above the launch point
denis-greek [22]

Answer:

V0=27.4 m/s; t=0.8 s

Explanation:

Final position y=37.0 m, time = 2.3 s; Initial position is set to be zero. We calculate the initial speed with the kinematics equation:

y_f=v_0t-0.5*g*t^2 We solve for initial speed

v_0=\frac{y_f+0.5gt^2}{t}=\frac{37+4.9*2.3^2}{2.3}=27.4m/s

Now, using the same expression we estimated time to first reach 18.5 m :

18.5=27.4t-4.9t^2 Second order equation with solutions

t1=0.8 s and t2=4.8 s

The first time corresponds to the first reach.

7 0
2 years ago
Other questions:
  • A hockey puck with a mass of 0.16 kg is sitting at rest on a frozen pond. Suddenly, the wind begins to blow, accelerating the pu
    6·2 answers
  • The voltage across the primary winding is 6000 V. If the primary winding has 50 coils and the secondary winding has 20 coils, wh
    11·2 answers
  • A 60 kg student in a rowboat on a still lake decides to dive off the back of the boat. The studen'ts horizontal aceleration is 2
    9·1 answer
  • A titanium bicycle frame displaces 0.314 l of water and has a mass of 1.41 kg.part what is the density of the titanium in g/cm3
    7·1 answer
  • Compare the density, weight, mass, and volume of a pound of gold to a pound of iron on the surface of Earth.
    11·1 answer
  • A government agency estimated that air bags have saved over 14,000 lives as of April 2004 in the United States. (They also state
    13·1 answer
  • A pesticide was applied to a population of roaches, and it was determined that the LD50 was 55mgkg. If the average mass of a roa
    7·1 answer
  • the base of a rectangular vessel measure 10m by 18cm. water is poured into a depth of 4cm. (a) what is the pressure on the base?
    10·1 answer
  • A radioactive nucleus has a half-life of 5*108 years. Assuming that a sample of rock (say, in an asteroid) solidified right afte
    13·1 answer
  • The velocity of a passenger relative to a boat is -vpb. The velocity of the boat relative to the river it is moving on is vbr. T
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!