Answer:
Q = ba⁴ * ε₀
Explanation:
From Gauss's Law, we know that
flux Φ = Q / ε₀
where ε₀ = 8.85e-12 C²/N·m²
and also,
Φ = EAcosθ
The field is directed along the x-axis, so that all of the flux passes through the side of the cube at x = a. This means that θ = 0º, and thus
Φ = EAcos0
Φ = EA
E = bx² meanwhile, we are interested in the point where x = a, so we substitute and then
E = ba²
Since A = a² for the cube face, we have
Q / ε₀ = E * A
Q / ε₀ = ba² * a²
so that
Q = ba⁴ * ε₀
Answer:
3×10^7 m/s or 0.10c (e)
Explanation: If the actual value of the speed of light were to be put into consideration.
Given that the speed of light is c = 3.0×10^8m/s
The alien spaceship is approaching at the rate of 10% of the speed of light.
10% of 3.0×10^8m/s
10/100 × 3.0×10^8m/s
0.1 ×3.0×10^8m/s
3×10^7 m/s. Which is the same thing as 0.1 of c = 0.1×c
Answer:
(a) coefficient of friction = 0.451
This was calculated by the application of energy conservation principle (the total sum of energy in a closed system is conserved)
(b) No, it comes to a stop 5.35m short of point B. This is so because the spring on expanding only does a work of 43 J on the block which is not enough to meet up the workdone of 398 J against friction.
Explanation:
The detailed step by step solution to this problems can be found in the attachment below. The solution for part (a) was divided into two: the motion of the body from point A to point B and from point B to point C. The total energy in the system is gotten from the initial gravitational potential energy. This energy becomes transformed into the work done against friction and the work done in compression the spring. A work of 398J was done in overcoming friction over a distance of 6.00m. The energy used in doing so is lost as friction is not a conservative force. This leaves only 43J of energy which compresses the spring. On expansion the spring does a work of 43J back on the block is only enough to push it over a distance of 0.65m stopping short of 5.35m from point B.
Thank you for reading and I hope this is helpful to you.
The gravitational potential energy of the brick is 25.6 J
Explanation:
The gravitational potential energy of an object is the energy possessed by the object due to its position in a gravitational field.
Near the surface of a planet, the gravitational potential energy is given by

where
m is the mass of the object
g is the strength of the gravitational field
h is the height of the object relative to the ground
For the brick in this problem, we have:
m = 8 kg is its mass
g = 1.6 N/kg is the strenght of the gravitational field on the moon
h = 2 m is the height above the ground
Substituting, we find:

Learn more about potential energy:
brainly.com/question/1198647
brainly.com/question/10770261
#LearnwithBrainly
Answer:
Explanation:
The mass of the deuteron = mass of the proton + mass of the neutron + mass equivalent of the energy of 2.2 Mev evolved.
I amu = 931 Mev
2.2 Mev = 2.2 / 931 amu
= ( 2.2 / 931 )x 1.6726 x 10⁻²⁷
= .00395 x 10⁻²⁷
The mass of the deuteron =( 1.6726 + 1.6749 + .00395)x 10⁻²⁷ kg
= 3.35145 x 10⁻²⁷ kg
b ) Momentum of gamma ray
= h / λ ( h is plank's constant and λ is wavelength of gamma ray )
= hυ / υλ ( υ is frequency of gamma ray )
= E / c ( E is energy of photon and c is velocity o light )
= 2.2 x 10⁶ x 1.6 x 10⁻¹⁹ J / 3 x 10⁸
= 1.173 x 10⁻²¹ Kg m /s
This will be the momentum of deuteron also
Kinetic energy
= p² / 2m ( p is momentum and m is mass of deuteron )
= ( 1.173 x 10⁻²¹ )² / ( 2 x 3.35145 x 10⁻²⁷)
= 1.376 x ⁻¹⁵ J
Energy of gamma ray
= 2.2 x 10⁶ x 1.6 x 10⁻¹⁹ J
= 3.52 x 10⁻¹³ J
So kinetic energy of deuteron is smaller than energy of gamma ray photon .