Answer:
Henri’s wave and Geri’s wave have the same amplitude and the same energy
Explanation:
The amplitude of a wave is the distance between the midpoint and the trough (or the crest). This is equivalent to half the distance between the trough and the crest. Therefore:
- amplitude of Henri's wave: 4 cm
- amplitude of Geri's wave: 8/2 = 4 cm
The energy of a wave is directly proportional to its amplitude.
<span>Waves hitting at an angle and then bending around features of the coast is known as Wave refraction
When waves hitting a specific angle, some part of the waves will be closer to the shallow part of the water and some part will be closer to the deeper part of the water, which makes the wave became somehow bent around the shore.</span>
Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Answer:
What is u should know it bc u should answered it already
Explanation:
I don't understand what you mean by "depth" of the steps. The flat part of the step has a front-to-back dimension, and the 'riser' has a height. I don't care about the horizontal dimension of the step because it doesn't add anything to the climber's potential energy. And if the riser of each step is 20cm high, then 3,234 of them only take him (3,234 x 0.2) = 646.8 meters up off the ground. So something is definitely fishy about the steps.
Fortunately, we don't need to worry at all about the steps in order to derive a first approximation to the answer ... one that's certainly good enough for high school Physics.
In order to lift his bulk 828 meters from the street to the top of the Burj, the climber has to provide a force of 800 newtons, and maintain it through a distance of 828 meters. The work [s]he does is (force) x (distance) = <em>662,400 joules. </em>