answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lapatulllka [165]
2 years ago
9

Calculate the energy released in joules when one mole of polonium-214 decays according to the following equation21484 Po -->

21082 Pb + 42 HeAtomic masses: Pb-210 = 209.98284 amu,Po-214 = 213.99519 amu, He-4 = 4.00260 amu. (1 kg = 6.022 × 1026 amu; NA = 6.022 × 1023 mol–1; c = 2.99792458 × 108 m/s)
Physics
1 answer:
GuDViN [60]2 years ago
8 0

Answer:

ΔE = 8.77 × 10¹¹ J

Explanation:

given,

²¹⁴₈₄Po -----> ²¹⁰₈₂Pb + 42 He

Atomic masses: Pb-210 = 209.98284 amu

Po-214 = 213.99519 amu

He-4 = 4.00260 amu

1 kg = 6.022 × 10²⁶ amu;

NA = 6.022 × 10²³ mol⁻¹

c = 2.99792458 × 10⁸ m/s

energy of molecule using equation

ΔE = Δm c²

Δm is mass difference and c is speed of light

Δm = 209.98284 + 4.00260 - 213.99519

Δm = - 0.00975 amu

1 amu = 1.66 x 10⁻²⁷ kg

- 0.00975 amu = - 0.00975 x 1.66 x 10⁻²⁷ Kg

                         = -0.016185 x 10⁻²⁷ Kg

total mass = 6.022 × 10²³ x -0.016185 x 10⁻²⁷

                 = -0.097467 x 10⁻⁴ Kg

ΔE = -(0.097467 x 10⁻⁴) (3 x 10^8)²

ΔE = - 8.77 × 10¹¹

ΔE = 8.77 × 10¹¹ J

You might be interested in
Pressure and volume changes at a constant temperature can be calculated using
Crank
It can be calculated using Boyle's Law.  A.
3 0
1 year ago
A 125-g metal block at a temperature of 93.2 °C was immersed in 100. g of water at 18.3 °C. Given the specific heat of the metal
Nataly_w [17]

Answer:

34.17°C

Explanation:

Given:

mass of metal block = 125 g

initial temperature T_i = 93.2°C

We know

Q = m c \Delta T   ..................(1)

Q= Quantity of heat

m = mass of the substance

c = specific heat capacity

c = 4.19 for H₂O in J/g^{\circ}C

\Delta T = change in temperature

Now

The heat lost by metal = The heat gained by the metal

Heat lost by metal = 125\times 0.9\times (93.2-T_f)

Heat gained by the water = 100\times 4.184\times(T_f -18.3)

thus, we have

125\times 0.9\times (93.2-T_f) = 100\times 4.184\times(T_f -18.3)

10485-112.5T_f = 418.4T_f - 7656.72

⇒ T_f = 34.17^oC

Therefore, the final temperature will be = 34.17°C

6 0
2 years ago
What is the threshold frequency for sodium metal if a photon with frequency 6.66 × 1014 s−1 ejects a photon with 7.74 × 10−20 J
FrozenT [24]

Answer:

5.5 × 10^14 Hz or s^-1

no orange light has less frequency so no photoelectric effect

Explanation:

hf = hf0 + K.E

HERE h is Planck 's constant having value 6.63 × 10 ^-34 J s

f is frequency of incident photon and f0 is threshold frequency

hf0 = hf- k.E

6.63 × 10 ^-34 × f0 = 6.63 × 10 ^-34× 6.66 × 10^14 - 7.74× 10^-20

6.63 × 10 ^-34 × f0 = 3.64158×10^-19

                           f0 = 3.64158×10^-19/ 6.63 × 10 ^-34

                           f0 = 5.4925 × 10^14

                            f0 =5.5 × 10^14 Hz or s^-1

frequency of orange light is 4.82 × 10^14 Hz which is less than threshold frequency hence photo electric effect will not be observed for orange light

8 0
2 years ago
A professor's office door is 0.99 m wide, 2.2 m high, 4.2 cm thick; has a mass of 27 kg, and pivots on frictionless hinges. A "d
ANEK [815]

Answer:

I=8.8209\ kg.m^2

\alpha=0.6348\ rad.s^{-2}

Explanation:

Given:

  • width of door, w=0.99\ m
  • height of the door, h=2.2\ m
  • thickness of the door, t=4.2\ cm
  • mass of the door, m=27\ kg
  • torque on the door, \tau=5.6\ N.m

<em>∵Since the thickness of the door is very less as compared to its other dimensions, therefore we treat it as a rectangular sheet.</em>

  • For a rectangular sheet we have the mass moment of inertia inertia as:

I=\frac{1}{3} m.w^2

I=\frac{1}{3}\times 27\times 0.99^2

I=8.8209\ kg.m^2

We have a relation between mass moment of inertia, torque and angular acceleration as:

\alpha=\frac{\tau}{I}

\alpha=\frac{5.6}{8.8209}

\alpha=0.6348\ rad.s^{-2}

6 0
2 years ago
Find an expression for the acceleration a of the red block after it is released. use mr for the mass of the red block, mg for th
Drupady [299]

<span>Assuming pulley is frictionless. Let the tension be ‘T’. See equation below.</span>

<span> </span>

6 0
2 years ago
Read 2 more answers
Other questions:
  • What is the approximate increase in size from a 1 w to a 2w carbon resistor?
    5·1 answer
  • A car approaching a stationary observer emits 450. hz from its horn. if the observer detects a frequency pf 470. hz, how fast is
    12·1 answer
  • An air-filled 20-μf capacitor has a charge of 60 μc on its plates. how much energy is stored in this capacitor?
    8·1 answer
  • A transverse wave is described by the function y(x,t)=2.3cos(4.7x+12t−π/2), where distance is measured in meters and time in sec
    14·2 answers
  • A responder can protect himself/herself from radiation by using shielding as a response action. What materials are best for prot
    6·1 answer
  • To practice Problem-Solving Strategy 25.1 Power and Energy in Circuits. A device for heating a cup of water in a car connects to
    5·1 answer
  • A millionairess was told in 1992 that she had exactly 15 years to live. However, if she immediately takes off, travels away from
    5·1 answer
  • "For a first order instrument with a sensitivity of .4 mV/K and a time" constant of 25 ms, find the instrument’s response as a f
    9·1 answer
  • A student starts at the origin and ends up at a position 500 meters north of the origin. She knows she walked 250 meters straigh
    11·1 answer
  • A basketball is tossed upwards with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m ​ 5, point, 0, start fraction, start text, m
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!