answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alekssandra [29.7K]
2 years ago
6

A responder can protect himself/herself from radiation by using shielding as a response action. What materials are best for prot

ecting against beta particles?
Physics
1 answer:
Irina-Kira [14]2 years ago
3 0

Answer:

Few millimeter thick aluminium, water, wood, acrylic glass or plastic.

Explanation:

The materials that are best for protection against beta particles are few millimeter thickness of aluminium, but for the high energy beta-particles radiations the low atomic mass materials such as plastic, wood, water and acrylic glass can be used.

These materials can also be used in personal protective equipment which includes all the clothing that can be worn to prevent any injury or illness due to the exposure to radiation.

You might be interested in
Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight. Use this co
natima [27]

Recall that in the equilibrium position, the upward force of the spring balances the force of gravity on the weight is given below.

Explanation:

Measure unstretched length of spring, L.  E.g. L = 0.60m.

Set mass to a convenient value (e.g. m = 0.5kg).

Hang mass.

Measure new spring length, L'. E.g. L' = 0.70m.

Calculate extension: e = L' - L = 0.70 – 0.60 = 0.10m

Use mg = ke (in equilibrium weight = tension)

k = mg/e

Don't know what value you are using for example.  Suppose it is 10N/kg (same thing as 10m/s²).

k = 0.5*10/0.10 = 50 N/m

Repeat for a few different masses.  (L always stays the same.)

Take the average of your k values.

5 0
1 year ago
Read 2 more answers
One nucleus contains 31 protons and 40 neutrons another nucleus contains 31 protons and 41 neutrons what can you conclude about
Pavel [41]

They are isotopes of the same element.

5 0
2 years ago
Read 2 more answers
A 50-g cube of ice, initially at 0.0°C, is dropped into 200 g of water in an 80-g aluminum container, both initially at 30°C.
MakcuM [25]

Answer:

b. 9.5°C

Explanation:

m_i = Mass of ice = 50 g

T_i = Initial temperature of water and Aluminum = 30°C

L_f = Latent heat of fusion = 3.33\times 10^5\ J/kg^{\circ}C

m_w = Mass of water = 200 g

c_w = Specific heat of water = 4186 J/kg⋅°C

m_{Al} = Mass of Aluminum = 80 g

c_{Al} = Specific heat of Aluminum = 900 J/kg⋅°C

The equation of the system's heat exchange is given by

m_i(L_f+c_wT)+m_wc_w(T-T_i)+m_{Al}c_{Al}=0\\\Rightarrow 0.05\times (3.33\times 10^5+4186\times T)+0.2\times 4186(T-30)+0.08\times 900(T-30)=0\\\Rightarrow 1118.5T-10626=0\\\Rightarrow T=\dfrac{10626}{1118.5}\\\Rightarrow T=9.50022\ ^{\circ}C

The final equilibrium temperature is 9.50022°C

4 0
2 years ago
A 5⁢kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant.
Umnica [9.8K]

Answer:

The gravitational force exerted on the object is 75 N (answer D)

Explanation:

Hi there!

The gravitational force is calculated as follows:

F = m · g

Where:

F = force of gravity.

m = mass of the object.

g = acceleration due to gravity (unknown).

For a falling object moving in a straight line, its height at a given time can be calculated using the following equation:

y = y0 + v0 · t + 1/2 · a · t²

Where:

y = position at time t.

y0 = initial position.

v0 = initial velocity.

t = time.

g = acceleration due to gravity.

Let´s place the origin of the frame of reference at the point where the object is released so that y0 = 0. Let´s also consider the downward direction as negative.

Then, after 2 seconds, the height of the object will be -30 m:

y = y0 + v0 · t + 1/2 · g · t²

-30 m = 0 m + 0 m/s · 2 s + 1/2 · g · (2 s)²

-30 m = 1/2 · g · 4 s²

-30 m = 2 s ² · g

-30 m/2 s² = g

g = -15 m/s²

Then, the magnitude of the gravitational force will be:

F = m · g

F = 5 kg · 15 m/s²

F = 75 N

The gravitational force exerted on the object is 75 N (answer D)

Have a nice day!

8 0
2 years ago
Sayid made a chart listing data of two colliding objects. A 5-column table titled Collision: Two Objects Stick Together with 2 r
Alborosie

Answer:

6 m/s is the missing final velocity

Explanation:

From the data table we extract that there were two objects (X and Y) that underwent an inelastic collision, moving together after the collision as a new object with mass equal the addition of the two original masses, and a new velocity which is the unknown in the problem).

Object X had a mass of 300 kg, while object Y had a mass of 100 kg.

Object's X initial velocity was positive (let's imagine it on a horizontal axis pointing to the right) of 10 m/s. Object Y had a negative velocity (imagine it as pointing to the left on the horizontal axis) of -6 m/s.

We can solve for the unknown, using conservation of momentum in the collision: Initial total momentum = Final total momentum (where momentum is defined as the product of the mass of the object times its velocity.

In numbers, and calling P_{xi} the initial momentum of object X and P_{yi} the initial momentum of object Y, we can derive the total initial momentum of the system: P_{total}_i=P_{xi}+P_{yi}= 300*10 \frac{kg*m}{s} -100*6\frac{kg*m}{s} =\\=(3000-600 )\frac{kg*m}{s} =2400 \frac{kg*m}{s}

Since in the collision there is conservation of the total momentum, this initial quantity should equal the quantity for the final mometum of the stack together system (that has a total mass of 400 kg):

Final momentum of the system: M * v_f=400kg * v_f

We then set the equality of the momenta (total initial equals final) and proceed to solve the equation for the unknown(final velocity of the system):

2400 \frac{kg*m}{s} =400kg*v_f\\\frac{2400}{400} \frac{m}{s} =v_f\\v_f=6 \frac{m}{s}

7 0
2 years ago
Read 2 more answers
Other questions:
  • An green hoop with mass mh = 2.8 kg and radius rh = 0.13 m hangs from a string that goes over a blue solid disk pulley with mass
    9·1 answer
  • What best describes myotibrils
    12·1 answer
  • PLEASE HELP!!!!!! WILL GIVE BRAINLIEST TO WHOEVER ANSWERS WITH THE RIGHT ANSWER !!!!!!!! 
    6·2 answers
  • The bird is held in level flight due to the force exerted on it by the air as the bird beats its wings. What is the maximum valu
    5·1 answer
  • A thin insulating rod is bent into a semicircular arc of radius a, and a total electric charge Q is distributed uniformly along
    6·1 answer
  • Xander's friend Corey has a skateboard that he rides at Newton's Skate Park.
    15·1 answer
  • You must determine the length of a long, thin wire that is suspended from the ceiling in the atrium of a tall building. A 2.00-c
    6·1 answer
  • 7. Imagine you are pushing a 15 kg cart full of 25 kg of bottled water up a 10o ramp. If the coefficient of friction is 0.02, wh
    8·1 answer
  • An object has an acceleration of 6.0 m/s/s. If the net force was doubled and the mass was one-third the original value, then the
    15·1 answer
  • A physics teacher pushes an environmental science teacher out of a stationary helicopter without a parachute from a height of 48
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!