answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
2 years ago
15

Suppose that a freely falling object were somehow equipped with an odometer. Would the readings of distance fallen each second i

ndicate equal or different falling distances for successive seconds? 1. Greater distances fallen in successive seconds 2. All are wrong. 3. Smaller distances fallen in successive seconds 4. Equal distances fallen in successive seconds 5. Initially equal distances fallen in successive seconds, then greater distances fallen in successive seconds
Physics
1 answer:
maks197457 [2]2 years ago
3 0

Answer:

1  greater distances fallen in successive seconds

Explanation:

When a body falls freely it is subjected to the action of the force of gravity, which gives an acceleration of 9.8 m / s2, consequently, we are in an accelerated movement

If we use the kinematic formula we can find the position of the body

       Y = Vo t + ½ to t2

Where the initial velocity is zero or constant and the acceleration is the acceleration of gravity

Y = - ½ g t2 = - ½ 9.8 t2 = -4.9 t2

Let's look for the position for successive times

t (s)      Y (m)

  1          -4.9

  2         -19.6

   3        -43.2

The sign indicates that the positive sense is up

It can be clearly seen that the distance is greatly increased every second that passes

You might be interested in
You are riding on a roller coaster that starts from rest at a height of 25.0 m and moves along a frictionless track. however, af
djyliett [7]
I attached the missing picture.
We can figure this one out using the law of conservation of energy.
At point A the car would have potential energy and kinetic energy.
A: mgh_1+\frac{mv_1^2}{2}
Then, while the car is traveling down the track it loses some of its initial energy due to friction:
W_f=F_f\cdot L
So, we know that the car is approaching the point B with the following amount of energy:
mgh_1+\frac{mv_1^2}{2}- F_fL
The law of conservation of energy tells us that this energy must the same as the energy at point B. 
The energy at point B is the sum of car's kinetic and potential energy:
B: mgh_2+\frac{mv_2}{2}
As said before this energy must be the same as the energy of a car approaching the loop:
mgh_2+\frac{mv_2}{2}=mgh_1+\frac{mv_1^2}{2}- F_fL
Now we solve the equation for v_1:
v_1^2=2g(h_2-h_1)+v_2^2+\frac{2F_fL}{m}\\
v_1^2=39.23\\
v_1=\sqrt{39.23}=6.26\frac{m}{s}

4 0
2 years ago
Read 2 more answers
A 5⁢kg object is released from rest near the surface of a planet such that its gravitational field is considered to be constant.
Umnica [9.8K]

Answer:

The gravitational force exerted on the object is 75 N (answer D)

Explanation:

Hi there!

The gravitational force is calculated as follows:

F = m · g

Where:

F = force of gravity.

m = mass of the object.

g = acceleration due to gravity (unknown).

For a falling object moving in a straight line, its height at a given time can be calculated using the following equation:

y = y0 + v0 · t + 1/2 · a · t²

Where:

y = position at time t.

y0 = initial position.

v0 = initial velocity.

t = time.

g = acceleration due to gravity.

Let´s place the origin of the frame of reference at the point where the object is released so that y0 = 0. Let´s also consider the downward direction as negative.

Then, after 2 seconds, the height of the object will be -30 m:

y = y0 + v0 · t + 1/2 · g · t²

-30 m = 0 m + 0 m/s · 2 s + 1/2 · g · (2 s)²

-30 m = 1/2 · g · 4 s²

-30 m = 2 s ² · g

-30 m/2 s² = g

g = -15 m/s²

Then, the magnitude of the gravitational force will be:

F = m · g

F = 5 kg · 15 m/s²

F = 75 N

The gravitational force exerted on the object is 75 N (answer D)

Have a nice day!

8 0
2 years ago
Starting at point 0, you travel 500 m on a straight road that slopes upward at a constant angle of 5 degrees. What is your heigh
ira [324]

Answer:

43.58 m

Explanation:

If you travel 500 m on a straight road that slopes upward at a constant angle of 5 degrees

Using trigonometry ratio

Sin 5 = opposite/hypothenus

Where the hypothenus = 500m

Opposite = height h

Sin 5 = h/500

Cross multiply

500 × sin 5 = h

h = 500 × 0.08715

h = 43.58m

Therefore, the height above the starting point is equal to 43.58m

5 0
2 years ago
A windowpane is half a centimeter thick and has an area of 1.0 m2. The temperature difference between the inside and outside sur
polet [3.4K]

To solve this problem it is necessary to apply the concepts related to the heat flux rate expressed in energetic terms. The rate of heat flow is the amount of heat that is transferred per unit of time in some material. Mathematically it can be expressed as:

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

Where

k = 0.84 J/s⋅m⋅°C (The thermal conductivity of the material)

A = 1m^2 Area

L = 5*10^{-3}m Length

T_H= Temperature of the "hot"reservoir

T_C= Temperature of the "cold"reservoir

Replacing with our values we have that,

\frac{Q}{t} = \frac{kA}{L} (T_H - T_C)

\frac{Q}{t} = \frac{(0.84)(1)}{0.005} (15)

\frac{Q}{t} = 2520J/s

Therefore the correct answer is B.

3 0
2 years ago
Un tubo de acero de 40000 kilómetros forma un anillo que se ajusta bien a la circunferencia de la tierra. Imagine que las person
Darina [25.2K]

Answer:

82.76m

Explanation:

In order to find the distance of the steel ring to the ground, when its temperature has raised by 1°C, you first calculate the radius of the steel tube before its temperature increases.

You use the formula for the circumference of the steel ring:

C=2\pi r    (1)

C: circumference of the ring = 40000 km = 4*10^7m (you assume the circumference is the length of the steel tube)

you solve for r in the equation (1):

r=\frac{C}{2\pi}=\frac{4*10^7m}{2\pi}=6,366,197.724m

Next, you use the following formula to calculate the change in the length of the tube, when its temperature increases by 1°C:

L=Lo[1+\alpha \Delta T]         (2)

L: final length of the tube = ?

Lo: initial length of the tube = 4*10^7m

ΔT = change in the temperature of the steel tube = 1°C

α: thermal coefficient expansion of steel = 13*10^-6 /°C

You replace the values of the parameters in the equation (2):

L=(4*10^7m)(1+(13*10^{-6}/ \°C)(1\°C))=40,000,520m

With the new length of the tube, you can calculate the radius of a ring formed with the tube. You again solve the equation (1) for r:

r'=\frac{C}{2\pi}=\frac{40,000,520m}{2\pi}=6,366,280.484m

Finally, you compare both r and r' radius:

r' - r = 6,366,280.484m - 6,366,197.724m = 82.76m

Hence, the distance to the ring from the ground is 82.76m

4 0
2 years ago
Other questions:
  • Which sequence correctly shows how stars form?
    8·2 answers
  • What do wind turbines, hydroelectric dams, and ethanol plants have in common?
    7·2 answers
  • Takumi works in his yard for 45 minutes each Saturday. He works in the morning, and he wears sunscreen and a hat each time he wo
    12·2 answers
  • A helicopter, starting from rest, accelerates straight up from the roof of a hospital. The lifting force does work in raising th
    11·1 answer
  • If you were to triple the size of the Earth (R = 3R⊕) and double the mass of the Earth (M = 2M⊕), how much would it change the g
    12·1 answer
  • At a given instant the bottom A of the ladder has an acceleration aA = 4 f t/s2 and velocity vA = 6 f t/s, both acting to the le
    8·1 answer
  • The blade of metal cutter is shorter than that scissors of tailors<br><br>​
    6·1 answer
  • How far must 5N force pull a 50g toy car if 30J of energy are transferred?​
    6·1 answer
  • Jo, Daniel and Helen are pulling a metal ring. Jo pulls with a force of 100N in one direction and Daniel with a force of 140N in
    10·1 answer
  • A student is asked to describe the path of a paper airplane that is thrown in the classroom. Which statement best describes the
    11·3 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!