Answer:
N=119.34 turns
Explanation:
The magnetic field of a solenoid is calculated using the formula:
B= µo*
Equation 1
Where:
B: magnetic field in Teslas (T)
µo: free space permeability in T*m/A
I= Intensity of the current flowing through the conductor in ampere (A)
N= number of turns
L= solenoid length in meters (m)
Data of the problem:
L=10cm=
, B= 1.5mT=
,I=1A
µo=
We cleared N of the equation (1):
N=B*L/ µo*I
N=


Answer
N=119.34 turns
Answer:
3.5 N
Explanation:
Let the 0-cm end be the moment point. We know that for the system to be balanced, the total moment about this point must be 0. Let's calculate the moment at each point, in order from 0 to 100cm
- Tension of the string attached at the 0cm end is 0 as moment arm is 0
- 2 N weight suspended from the 10 cm position: 2*10 = 20 Ncm clockwise
- 2 N weight suspended from the 50 cm position: 2*50 = 100 Ncm clockwise
- 1 N stick weight at its center of mass, which is 50 cm position, since the stick is uniform: 1*50 = 50 Ncm clockwise
- 3 N weight suspended from the 60 cm position: 3*60 = 180 Ncm clockwise
- Tension T (N) of the string attached at the 100-cm end: T*100 = 100T Ncm counter-clockwise.
Total Clockwise moment = 20 + 100 + 50 + 180 = 350Ncm
Total counter-clockwise moment = 100T
For this to balance, 100 T = 350
so T = 350 / 100 = 3.5 N
Answer:
0 kg m/s before and after collision
Explanation:
Let m, v be the mass and speed of the 2 balls, respectively, before the collision. Since they have the same mass and same speed but in opposite direction, the total momentum of the system would be:
P = mv - mv = 0 kg m/s
As the collision is elastic. The total momentum after the collision is the same as the total momentum before the collision, which is 0.
Answer:opposite
Explanation:for a capacitor to discharge (after charging) the polarities of the current and voltage have to be reversed
Answer:
Decreasing the distance between Hox and Blox, increasing the mass of Hox, or increasing the mass of Hox and Blox.
Explanation:
The gravity force is directly proportional to the mass of the bodies and inversely proportional to the square of the distance that separates them.
Or
If we decrease the distance between both planets (Hox and Blox), the gravitational pull between them will increase.
On the other hand, if we keep the distance between Hox and Blox, but we increase the mass of one of them, or increase the mass of both, the gravitational pull between them will also increase.