answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
2 years ago
14

|| Climbing ropes stretch when they catch a falling climber, thus increasing the time it takes the climber to come to rest and r

educing the force on the climber. In one standardized test of ropes, an 80 kg mass falls 4.8 m before being caught by a 2.5-m-long rope. If the net force on the mass must be kept below 11 kN, what is the minimum time for the mass to come to rest at the end of the fall

Physics
2 answers:
Artemon [7]2 years ago
8 0

The minimum time for the mass to come to rest at the end of the fall is about 0.071 s

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\large {\boxed {F = ma }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>a = Acceleration ( m )</em>

\texttt{ }

\large {\boxed {F = \Delta (mv) \div t }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>v = Velocity of Object ( m/s )</em>

<em>t = Time Taken ( s )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of climber = m = 80 kg

height of fall = h = 4.8 m

net force = ∑F = 11 k N = 11000 N

<u>Asked:</u>

minimum time = t = ?

<u>Solution:</u>

<em>FIrstly , we could find the initial velocity of climber as he caught by the rope:</em>

v^2 = u^2 + 2gh

v^2 = 0^2 + 2(9.8)(4.8)

v^2 = 94.08

v = \frac{28}{3}\sqrt{5} \texttt{ m/s}

\texttt{ }

<em>Next , we will use Newton's Law of Motion to calculate the minimum time:</em>

\Sigma F = \Delta p \div t

\Sigma F = m \Delta v \div t

11000 = 80 (\frac{28}{3}\sqrt{5}) \div t

t = 80 (\frac{28}{3}\sqrt{5}) \div 11000

t \approx 0.071 \texttt{ s}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

Otrada [13]2 years ago
4 0

To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.

Newton's second law is defined as

F = ma

Where,

m = mass

a = acceleration

From this equation we can figure the acceleration out, then

a = \frac{F}{m}

a = \frac{11*10^3}{80}

a = 137.5m/s

From the cinematic equations of motion we know that

v_f^2-v_i^2 = 2ax

Where,

v_f =Final velocity

v_i =Initial velocity

a = acceleration

x = displacement

There is not Final velocity and the acceleration is equal to the gravity, then

v_f^2-v_i^2 = 2ax

0-v_i^2 = 2(-g)x

v_i =\sqrt{2gx}

v_i = \sqrt{2*9.8*4.8}

v_i = 9.69m/s

From the equation of motion where acceleration is equal to the velocity in function of time we have

a = \frac{v_i}{t}

t = \frac{v_i}{a}

t =\frac{9.69}{137.5}

t = 0.0705s

Therefore the time required is 0.0705s

You might be interested in
Suppose an electrical wire is replaced with one having every linear dimension doubled (i.e., the length and radius have twice th
Flauer [41]

Answer:

The new resistance becomes half of the initial resistance.

Explanation:

The resistance of a wire is given by :

R=\dfrac{\rho L}{A}

\rho = resistivity of material

L and A are linear dimension

If the electrical wire is replaced with one having every linear dimension doubled i.e. l' = 2l and r' = 2r

New resistance of wire is given by :

R'=\dfrac{\rho L'}{A'}

R'=\dfrac{\rho (2L)}{\pi (2r)^2}

R'=\dfrac{1}{2}\dfrac{\rho L}{A}

R'=\dfrac{1}{2}R

The new resistance becomes half of the initial resistance. Hence, this is the required solution.

4 0
2 years ago
A frog jumps to the left with an average speed of
Bingel [31]

Answer:

<h3>0.99 m</h3>

Explanation:

Average velocity is the change of rate of displacement with respect to time;

Average velocity = Displacement/Time

Given

Average velocity of the frog = 1.8m/s

Time = 0.55s

Required

Displacement of the frog

Substitute the given parameters into the formula;

1.8 = displacement/0.55

cross multiply

Displacement = 1.8*0.55

Displacement = 0.99 m

Hence the frog's displacement is 0.99m

7 0
1 year ago
Suppose you push a hockey puck of mass m across frictionless ice for a time 1.0 s, starting from rest, giving the puck speed v a
EleoNora [17]
Newton's second law ...Force = momentum change/time.momentum change = Forcextme.also, F=ma -> a=F/m - the more familiar form of Newton's second law
using one of the kinematic equations for m ...  V=u+at; u=0; a=F/m -> V=(F/m)xt.-> t=mV/F using one of the kinematic equations for 2m ... V=u+at; u=0; a=F/2m -> V=(F/2m)xt. -> t=2mV/F (twice as long, maybe ?)
I think I've made a mistake somewhere below, but I think that the principle is right ...using one of the kinematic equations for m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/m; t=1;  -> d=(1/2)(F/m)=F/2musing one of the kinematic equations for 2m ...  s=ut + (1/2)at^2); s=d;u=0;a=F/2m; t=1;  -> d=(1/2)(F/2m)=F/4m (half as far ????? WHAT ???)
3 0
1 year ago
Read 2 more answers
the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
kenny6666 [7]

The braking force is -400 N

Explanation:

We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

F \Delta t = m(v-u)

where in this problem, we have:

F is the force applied by the brakes

\Delta t = 65 s is the time interval

m = 13,000 kg is the mass of the ferry

u = 2.0 m/s is the initial velocity

v = 0 is the final velocity

And solving for F, we find the force applied by the brakes:

F=\frac{m(v-u)}{\Delta t}=\frac{(13000)(0-2.0)}{65}=-400 N

where the negative sign indicates that the direction is backward.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

4 0
1 year ago
Rhea kicks a soccer ball at 13 km/h to Sean. After kicking the ball, the speed of the soccer ball from Rhea’s reference frame is
BartSMP [9]

Answer:  Sean is standing still, and Rhea is running toward Sean while   kicking the ball

Explanation: Your welcome :)

5 0
2 years ago
Other questions:
  • How would reversing the wheel’s initial direction of rotation affect the result??
    6·1 answer
  • Using the periodic table entry below, how many neutrons does the most common isotope of hydrogen have?
    12·2 answers
  • If a bowl of fruit is sitting on a table in a state of rest, what is the net force acting on it?
    15·2 answers
  • Jamie pushes a book off a table. The push is an example of a contact force because A. Jamie used energy. B. Jamie had to touch t
    11·2 answers
  • A crane with output power of 200W will lift a 600N object a vertical distance of 4.0 meters in seconds
    10·1 answer
  • Astronauts often undergo special training in which they are subjected to extremely high centripetal accelerations. One device ha
    15·2 answers
  • You've decided to build a new gaming computer and are researching which power supply to buy. Which component in a high-end gamin
    12·1 answer
  • Compare these two collisions of a PE student with a wall.
    15·1 answer
  • The process of star and planet formation begins with a large cloud of gas and dust called a solar nebula. Rank the formation eve
    13·1 answer
  • Given three vectors A = 24i + 33j, B = 55i - 12j and C = 2i + 43j (a) Find the magnitude of each vector. (b) Write an expression
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!