answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
2 years ago
14

|| Climbing ropes stretch when they catch a falling climber, thus increasing the time it takes the climber to come to rest and r

educing the force on the climber. In one standardized test of ropes, an 80 kg mass falls 4.8 m before being caught by a 2.5-m-long rope. If the net force on the mass must be kept below 11 kN, what is the minimum time for the mass to come to rest at the end of the fall

Physics
2 answers:
Artemon [7]2 years ago
8 0

The minimum time for the mass to come to rest at the end of the fall is about 0.071 s

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\large {\boxed {F = ma }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>a = Acceleration ( m )</em>

\texttt{ }

\large {\boxed {F = \Delta (mv) \div t }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>v = Velocity of Object ( m/s )</em>

<em>t = Time Taken ( s )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of climber = m = 80 kg

height of fall = h = 4.8 m

net force = ∑F = 11 k N = 11000 N

<u>Asked:</u>

minimum time = t = ?

<u>Solution:</u>

<em>FIrstly , we could find the initial velocity of climber as he caught by the rope:</em>

v^2 = u^2 + 2gh

v^2 = 0^2 + 2(9.8)(4.8)

v^2 = 94.08

v = \frac{28}{3}\sqrt{5} \texttt{ m/s}

\texttt{ }

<em>Next , we will use Newton's Law of Motion to calculate the minimum time:</em>

\Sigma F = \Delta p \div t

\Sigma F = m \Delta v \div t

11000 = 80 (\frac{28}{3}\sqrt{5}) \div t

t = 80 (\frac{28}{3}\sqrt{5}) \div 11000

t \approx 0.071 \texttt{ s}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

Otrada [13]2 years ago
4 0

To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.

Newton's second law is defined as

F = ma

Where,

m = mass

a = acceleration

From this equation we can figure the acceleration out, then

a = \frac{F}{m}

a = \frac{11*10^3}{80}

a = 137.5m/s

From the cinematic equations of motion we know that

v_f^2-v_i^2 = 2ax

Where,

v_f =Final velocity

v_i =Initial velocity

a = acceleration

x = displacement

There is not Final velocity and the acceleration is equal to the gravity, then

v_f^2-v_i^2 = 2ax

0-v_i^2 = 2(-g)x

v_i =\sqrt{2gx}

v_i = \sqrt{2*9.8*4.8}

v_i = 9.69m/s

From the equation of motion where acceleration is equal to the velocity in function of time we have

a = \frac{v_i}{t}

t = \frac{v_i}{a}

t =\frac{9.69}{137.5}

t = 0.0705s

Therefore the time required is 0.0705s

You might be interested in
Lydia is often described as having a positive outlook on life. She assumes the best of people and situations. Lydia exemplifies
HACTEHA [7]
Lydia is an example of an optimist. Optimists always look at the positive side of a particular situation. They believe in a positive result. Optimist always see "the bright side" as opposed to the pessimist. The word optimism comes from latin word "optimum" which means "the best".

5 0
2 years ago
Read 2 more answers
You are stranded in a blizzard. You need water to drink to drink,and you're trying to stay warm.should the melt the snow and dri
Crazy boy [7]
It would be a really bad idea to eat the snow because you obviously are trying to stay warm right? Well, the best thing to do is melt the snow. However, the process of melting the snow would have a few complications as well. But yes, the latter idea (drinking the snow) is a better idea (not the best).
7 0
2 years ago
The number of gallons of water in a storage tank at time t, in minutes, is modeled by w(t) = 25 − t2 for 0≤t≤5. At what rate, in
Kisachek [45]

Answer:

Rate of change of water will be -6 gallon/minute

Explanation:

We have given water in the tank as the function of time as

w(t)=25-t^2

We have to find the rate of change of water in the tank at t = 3 minute

For rate of change we have to differentiate both side

So \frac{dw}{dt}=0-2t

At t = 3 minute

\frac{dw}{dt}=0-2\times 3=-6gallon/minute

8 0
2 years ago
A sled is moving down a steep hill. The mass of the sled is 50 kg and the net force acting on it is 20 N. What must be done to f
Rashid [163]
I believe the answer is #4. u can always ask google if u believe that's the wrong answer :)
4 0
2 years ago
Read 2 more answers
If 300. mL of water are poured into the measuring cup, the volume reading is 10.1 oz . This indicates that 300. mL and 10.1 oz a
tigry1 [53]

Answer:

Milliliters to Ounces Conversions

some results rounded

mL    - fl oz

200.00 6.7628

200.01 6.7631

200.02 6.7635

200.03 6.7638

200.04 6.7642

200.05 6.7645

200.06 6.7648

200.07 6.7652

200.08 6.7655

200.09 6.7658

200.10 6.7662

200.11 6.7665

200.12 6.7669

200.13 6.7672

200.14 6.7675

200.15 6.7679

200.16 6.7682

200.17 6.7686

200.18 6.7689

200.19 6.7692

200.20 6.7696

200.21 6.7699

200.22 6.7702

200.23 6.7706

200.24 6.7709

mL fl oz

200.25 6.7713

200.26 6.7716

200.27 6.7719

200.28 6.7723

200.29 6.7726

200.30 6.7729

200.31 6.7733

200.32 6.7736

200.33 6.7740

200.34 6.7743

200.35 6.7746

200.36 6.7750

200.37 6.7753

200.38 6.7757

200.39 6.7760

200.40 6.7763

200.41 6.7767

200.42 6.7770

200.43 6.7773

200.44 6.7777

200.45 6.7780

200.46 6.7784

200.47 6.7787

200.48 6.7790

200.49 6.7794

mL fl oz

200.50 6.7797

200.51 6.7800

200.52 6.7804

200.53 6.7807

200.54 6.7811

200.55 6.7814

200.56 6.7817

200.57 6.7821

200.58 6.7824

200.59 6.7828

200.60 6.7831

200.61 6.7834

200.62 6.7838

200.63 6.7841

200.64 6.7844

200.65 6.7848

200.66 6.7851

200.67 6.7855

200.68 6.7858

200.69 6.7861

200.70 6.7865

200.71 6.7868

200.72 6.7872

200.73 6.7875

200.74 6.7878

mL fl oz

200.75 6.7882

200.76 6.7885

200.77 6.7888

200.78 6.7892

200.79 6.7895

200.80 6.7899

200.81 6.7902

200.82 6.7905

200.83 6.7909

200.84 6.7912

200.85 6.7915

200.86 6.7919

200.87 6.7922

200.88 6.7926

200.89 6.7929

200.90 6.7932

200.91 6.7936

200.92 6.7939

200.93 6.7943

200.94 6.7946

200.95 6.7949

200.96 6.7953

200.97 6.7956

200.98 6.7959

200.99 6.7963

Explanation:

5 0
2 years ago
Read 2 more answers
Other questions:
  • Show that a directed multigraph having no isolated vertices has an euler circuit if and only if the graph is weakly connected an
    11·1 answer
  • A hockey puck with a mass of 0.16 kg is sitting at rest on a frozen pond. Suddenly, the wind begins to blow, accelerating the pu
    6·2 answers
  • Why does a clear stream always appear to be shallower than it actually is?
    14·2 answers
  • What is the atomic number z of 73li?
    12·2 answers
  • Write a hypothesis about the effect of increasing voltage on the current in the circuit. Use the "if . . . then . . . because .
    10·2 answers
  • a)A concentration C(mol/L) varies with time (min) according to the equation C=3.00exp(−2.00t) a) What are the implicit units of
    7·1 answer
  • Determine the values of mm and nn when the following average distance from the Sun to the Earth is written in scientific notatio
    5·1 answer
  • Einstein and Lorentz, being avid tennis players, play a fast-paced game on a court where they stand 20.0 m from each other. Bein
    15·1 answer
  • an ideal gas is confined to a container with adjustable volume. the number of moles, n, and temperature, t, are constant. by wha
    10·1 answer
  • A 1.00 kg ball traveling towards a soccer player at a velocity of 5.00 m/s rebounds off the soccer
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!