answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
spin [16.1K]
2 years ago
14

|| Climbing ropes stretch when they catch a falling climber, thus increasing the time it takes the climber to come to rest and r

educing the force on the climber. In one standardized test of ropes, an 80 kg mass falls 4.8 m before being caught by a 2.5-m-long rope. If the net force on the mass must be kept below 11 kN, what is the minimum time for the mass to come to rest at the end of the fall

Physics
2 answers:
Artemon [7]2 years ago
8 0

The minimum time for the mass to come to rest at the end of the fall is about 0.071 s

\texttt{ }

<h3>Further explanation</h3>

Newton's second law of motion states that the resultant force applied to an object is directly proportional to the mass and acceleration of the object.

\large {\boxed {F = ma }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>a = Acceleration ( m )</em>

\texttt{ }

\large {\boxed {F = \Delta (mv) \div t }

<em>F = Force ( Newton )</em>

<em>m = Object's Mass ( kg )</em>

<em>v = Velocity of Object ( m/s )</em>

<em>t = Time Taken ( s )</em>

Let us now tackle the problem !

\texttt{ }

<u>Given:</u>

mass of climber = m = 80 kg

height of fall = h = 4.8 m

net force = ∑F = 11 k N = 11000 N

<u>Asked:</u>

minimum time = t = ?

<u>Solution:</u>

<em>FIrstly , we could find the initial velocity of climber as he caught by the rope:</em>

v^2 = u^2 + 2gh

v^2 = 0^2 + 2(9.8)(4.8)

v^2 = 94.08

v = \frac{28}{3}\sqrt{5} \texttt{ m/s}

\texttt{ }

<em>Next , we will use Newton's Law of Motion to calculate the minimum time:</em>

\Sigma F = \Delta p \div t

\Sigma F = m \Delta v \div t

11000 = 80 (\frac{28}{3}\sqrt{5}) \div t

t = 80 (\frac{28}{3}\sqrt{5}) \div 11000

t \approx 0.071 \texttt{ s}

\texttt{ }

<h3>Learn more</h3>
  • Impacts of Gravity : brainly.com/question/5330244
  • Effect of Earth’s Gravity on Objects : brainly.com/question/8844454
  • The Acceleration Due To Gravity : brainly.com/question/4189441
  • Newton's Law of Motion: brainly.com/question/10431582
  • Example of Newton's Law: brainly.com/question/498822

\texttt{ }

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Dynamics

Otrada [13]2 years ago
4 0

To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.

Newton's second law is defined as

F = ma

Where,

m = mass

a = acceleration

From this equation we can figure the acceleration out, then

a = \frac{F}{m}

a = \frac{11*10^3}{80}

a = 137.5m/s

From the cinematic equations of motion we know that

v_f^2-v_i^2 = 2ax

Where,

v_f =Final velocity

v_i =Initial velocity

a = acceleration

x = displacement

There is not Final velocity and the acceleration is equal to the gravity, then

v_f^2-v_i^2 = 2ax

0-v_i^2 = 2(-g)x

v_i =\sqrt{2gx}

v_i = \sqrt{2*9.8*4.8}

v_i = 9.69m/s

From the equation of motion where acceleration is equal to the velocity in function of time we have

a = \frac{v_i}{t}

t = \frac{v_i}{a}

t =\frac{9.69}{137.5}

t = 0.0705s

Therefore the time required is 0.0705s

You might be interested in
If a 1,300 kg car with no people inside is on the edge of a cliff 1,500 m above the ground, what is its potential energy?
Ghella [55]

<u>Given that</u>

mass (m) = 1300 Kg ,

height (h) = 1500 m

Determine the potential energy ?

     P.E = m × g × h

           = 1300 × 9.81 × 1500

           = 19129500  Joules

           = 19129.5 KJ

3 0
2 years ago
Which of the following states that all matter tends to "warp" space in its vicinity and that objects react to this warping by ch
DedPeter [7]
It will be <span>Einstein's General Relativity</span>
4 0
2 years ago
Read 2 more answers
A woman is applying 300N/m2 of pressure on to door with her hand. Her hand has area of 0.02m2. Work out the force being applied​
never [62]

Answer:

6N

Explanation:

Given parameters:

Pressure applied by the woman  = 300N/m²

Area = 0.02m²

Unknown:

Force applied  = ?

Solution:

Pressure is the force per unit area on a body

        Pressure  = \frac{force}{area}

         Force  = Pressure x area

        Force  = 300 x 0.02  = 6N

8 0
2 years ago
A truck is traveling down a road with a 4-percent grade at a speed of 75 mi/h when its brakes are applied to slow it down to 22.
kvasek [131]

Answer:

3.964 s

Explanation:

Metric unit conversion:

1 miles = 1.6 km = 1600 m.

1 hour = 60 minutes = 3600 seconds

75 mph = 75 * 1600 / 3600 = 33.3 m/s

22.5 mph = 22.5 * 1600/3600 = 10 m/s

Let g = 9.81 m/s2

Friction is the product of coefficient and normal force, which equals to the gravity

F_f = \mu N = \mu mg

The deceleration caused by friction is friction divided by mass according to Newton 2nd law.

a = F_f / m = \mu mg / m = \mu g = 0.6 *9.81 = 5.886 m/s^2

So the time required to decelerate from 33.3 m/s to 10 m/s so the wheels don't slide, with the rate of 5.886 m/s2 is

t = \frac{\Delta v}{a} = \frac{33.3 - 10}{5.886} = 3.964 s

3 0
2 years ago
A chair of mass 30.0 kg is at rest on a horizontal floor. The floor is not frictionless. You push on the chair with a force of 8
miv72 [106K]
First make sure you draw a force diagram. You should have Fn going up, Fg going down, Ff going left and another Fn going diagonally down to the right. The angle of the diagonal Fn (we'll call it Fn2) is 35° and Fn2 itself is 80N. Fn2 can be divided into two forces: Fn2x which is horizontal, and Fn2y which is vertical. Right now we only care about Fn2y.

To solve for Fn2y we use what we're given and some trig. Drawing out the actual force of Fn2 along with Fn2x and Fn2y we can see it makes a right triangle, with 80 as the hypotenuse. We want to solve for Fn2y which is the opposite side, so Sin(35)=y/80. Fn2y= 80sin35 = 45.89N

Next we solve for Fg. To do this we use Fg= 9.8 * m. Mass = 30kg, so Fg = 9.8 * 30 = 294N.

Since the chair isn't moving up or down, we can set our equation equal to zero. The net force equation in the vertical direction will be Fn + Fn2y -Fg = 0. If we plug in what we know, we get Fn + 45.89 -294 = 0. Then solve this algebraically.

Fn +45.89 -294 = 0
Fn +45.89 = 294
Fn = 248.11 N

You'll get a more accurate answer if you don't round Fn2y when solving for it, it would be something along the lines of 45.88611 etc
7 0
2 years ago
Read 2 more answers
Other questions:
  • You are installing a new spark plug in your car, and the manual specifies that it be tightened to a torque that has a magnitude
    14·1 answer
  • A jogger runs 10.0 blocks do east, 5.0 blocks due South, and another two. Zero blocks do east. Assume all blocks are equal size,
    13·1 answer
  • Two swift canaries fly toward each other, each moving at 15.0 m/s relative to the ground, each warbling a note of frequency 1750
    11·1 answer
  • A thin beam of light enters a thick plastic sheet from air at an angle of 32.0° with the normal and continues in the sheet at an
    11·1 answer
  • A balloon drifts 140m toward the west in 45s ; then the wind suddenly changes and the balloon flies 90m toward the east in the n
    10·1 answer
  • Suppose that, instead of the Coulomb force law, one finds experimentally that the force between any two charge q1 and q2 is Writ
    11·1 answer
  • You are in a spacecraft moving at a constant velocity. The front thruster rocket fires incorrectly, causing the craft to slow do
    5·1 answer
  • 1. Do alto de uma plataforma com 15m de altura, é lançado horizontalmente um projéctil. Pretende-se atingir um alvo localizado n
    9·1 answer
  • Gretchen runs the first 4.0 km of a race at 5.0 m/s. Then a stiff wind comes up, so she runs the last 1.0 km at only 4.0 m/s.
    9·1 answer
  • The difference between the two molar specific heats of a gas is 8000J/kgK. If the ratio of the two specific heats is 1.65, calcu
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!