Answer:
Temperature decreases because the number of collision of the molecules decreases as they escape or evaporate. Molecules are in constant motion. Increase in temperature leads to increase in average kinetic energy of the molecules.
Answer:
a) L = 0.75m f₁ = 113.33 Hz
, f₃ = 340 Hz, b) L=1.50m f₁ = 56.67 Hz
, f₃ = 170 Hz
Explanation:
This resonant system can be simulated by a system with a closed end, the tile wall and an open end where it is being sung
In this configuration we have a node at the closed end and a belly at the open end whereby the wavelength
With 1 node λ₁ = 4 L
With 2 nodes λ₂ = 4L / 3
With 3 nodes λ₃ = 4L / 5
The general term would be λ_n= 4L / n n = 1, 3, 5, ((2n + 1)
The speed of sound is
v = λ f
f = v / λ
f = v n / 4L
Let's consider each length independently
L = 0.75 m
f₁ = 340 1/4 0.75 = 113.33 n
f₁ = 113.33 Hz
f₃ = 113.33 3
f₃ = 340 Hz
L = 1.5 m
f₁ = 340 n / 4 1.5 = 56.67 n
f₁ = 56.67 Hz
f₃ = 56.67 3
f₃ = 170 Hz
Answer:
F = - 59.375 N
Explanation:
GIVEN DATA:
Initial velocity = 11 m/s
final velocity = 1.5 m/s
let force be F
work done = mass* F = 4*F
we know that
Change in kinetic energy = work done
kinetic energy = 
kinetic energy =
= -237.5 kg m/s2
-237.5 = 4*F
F = - 59.375 N
The half-life equation
in which <em>n </em>is equal to the number of half-lives that have passed can be altered to solve for <em>n.</em>
<em>
</em>
<em>
</em>
Then, the number of half-lives that passed can be multiplied by the length of a half-life to find the total time.
<em>2 * 5700 = </em>11400 yr
Answer:
335°C
Explanation:
Heat gained or lost is:
q = m C ΔT
where m is the mass, C is the specific heat capacity, and ΔT is the change in temperature.
Heat gained by the water = heat lost by the copper
mw Cw ΔTw = mc Cc ΔTc
The water and copper reach the same final temperature, so:
mw Cw (T - Tw) = mc Cc (Tc - T)
Given:
mw = 390 g
Cw = 4.186 J/g/°C
Tw = 22.6°C
mc = 248 g
Cc = 0.386 J/g/°C
T = 39.9°C
Find: Tc
(390) (4.186) (39.9 - 22.6) = (248) (0.386) (Tc - 39.9)
Tc = 335