answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
alex41 [277]
2 years ago
5

The National High Magnetic Field Laboratory once held the world record for creating the strongest magnetic field. Their largest

hybrid magnet can produce a constant magnetic field of 45 T 45 T . To see if such a strong magnetic field could pose health risks for nearby workers, calculate the maximum acceleration the field could produce for Na + Na+ ions (of mass 3.8 × 10 − 26 kg 3.8×10−26 kg ) in blood traveling through the aorta. The speed of blood is highly variable, but 45 cm/s 45 cm/s is reasonable in the aorta.

Physics
1 answer:
Marina86 [1]2 years ago
5 0

Answer:

a = 85.3×10⁶ m/s²

Explanation:

Please see the attachment below.

You might be interested in
A rock is rolling down a hill. At position 1, it’s velocity is 2.0 m/s. Twelve seconds later, as it passes position 2, it’s velo
mr Goodwill [35]

Answer

Hi,

correct answer is {D} 3.5 m/s²

Explanation

Acceleration is the rate of change of velocity with time. Acceleration can occur when a moving body is speeding up, slowing down or changing direction.

Acceleration is calculated by the equation =change in velocity/change in time

a= {velocity final-velocity initial}/(change in time)

a=v-u/Δt

The units for acceleration is meters per second square m/s²

In this example, initial velocity =2.0m/s⇒u

Final velocity=44.0m/s⇒v

Time taken for change in velocity=12 s⇒Δt

a= (44-2)/12  = 42/12

3.5 m/s²

Best Wishes!

5 0
2 years ago
In Paul Hewitt's book, he poses this question: "If the forces that act on a bullet and the recoiling gun from which it is fired
Sauron [17]
They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.

Hope this helps :)
4 0
2 years ago
A spaceship of mass 8600 kg is returning to Earth with its engine turned off. Consider only the gravitational field of Earth. Le
Katyanochek1 [597]

Answer:

\Delta KE = 4.20\times 10^{13}\ J

Explanation:

given,

mass of spaceship(m) = 8600 Kg

Mass of earth = 5.972 x 10²⁴ Kg

position of movement of space ship

R₁ = 7300 Km

R₂ = 6700 Km

the kinetic energy of the spaceship increases by = ?

Increase in Kinetic energy = decrease in potential energy

    \Delta KE = GMm (\dfrac{1}{R_2}-\dfrac{1}{R_1})

    \Delta KE = GMm (\dfrac{R_1-R_2}{R_2R_1})

    \Delta KE = 6.67 \times 10^{-11}\times 5.972 \times 10^{24}\times 8600 (\dfrac{7300 - 6700}{7300 \times 6700})

    \Delta KE = 6.67 \times 10^{-11}\times 5.972 \times 10^{24}\times 8600 (\dfrac{600}{48910000})

    \Delta KE = 4.20\times 10^{13}\ J

5 0
2 years ago
A tennis player hits a ball 2.0 m above the ground. The ball leaves his racquet with a speed of 20 m/s at an angle 5.0 ∘ above t
ipn [44]

Answer:

ball clears the net

Explanation:

v_{o} = initial speed of launch of the ball = 20 ms^{-1}

\theta = angle of launch = 5 deg

Consider the motion of the ball along the horizontal direction

v_{ox} = initial velocity = v_{o} Cos\theta = 20 Cos5 = 19.92 ms^{-1}

t = time of travel

X = horizontal displacement of the ball to reach the net = 7 m

Since there is no acceleration along the horizontal direction, we have

X = v_{ox} t \\7 = v_{ox} t\\t = \frac{7}{v_{ox}}       Eq-1

Consider the motion of the ball along the vertical direction

v_{oy} = initial velocity = v_{o} Sin\theta = 20 Sin5 = 1.74 ms^{-1}

t = time of travel

Y_{o} = Initial position of the ball at the time of launch = 2 m

Y = Final position of the ball at time "t"

a_{y} = acceleration in down direction = - 9.8 ms⁻²

Along the vertical direction , position at any time is given as

Y = Y_{o} + v_{oy} t + (0.5) a_{y} t^{2}\\Y = 2 + (20 Sin5) (\frac{7}{20 Cos5}) + (0.5) (- 9.8) (\frac{7}{20 Cos5})^{2}\\Y = 2.00758 m\\

Since Y > 1 m

hence the ball clears the net

7 0
2 years ago
A car travels straight for 20 miles on a road that is 30° north of east. What is the east component of the car’s displacement to
Virty [35]
17.3 would be the correct answer.

4 0
2 years ago
Read 2 more answers
Other questions:
  • The world record for pole vaulting is 6.15 m. If the pole vaulter's gravitational potential energy is 4942 J, what is his mass?
    7·1 answer
  • A plane flying horizontally above earth’s surface at 100. meters per second drops a crate. the crate strikes the ground 30.0 sec
    9·1 answer
  • Gold and silicon are mutually insoluble in the solid state and form a eutectic system with a eutectic temperature of 636 k and a
    8·1 answer
  • Two roads intersect at right angles, one going north-south, the other east-west. an observer stands on the road 60 meters south
    15·2 answers
  • A brick is resting on a rough incline as shown in the figure. The friction force acting on the brick, along the incline, is
    9·2 answers
  • Suppose you have a pendulum clock which keeps correct time on Earth(acceleration due to gravity = 1.6 m/s2). For ever hour inter
    8·1 answer
  • A student solving for the acceleration of an object has applied appropriate physics principles and obtained the expression a=a1
    11·1 answer
  • The surface charge density on an infinite charged plane is - 2.10 ×10−6C/m2. A proton is shot straight away from the plane at 2.
    11·1 answer
  • A teacher performing demonstration finds that a piece of cork displaces 23.5 ml of water. The piece of cork has a mass 5.7 g. Wh
    10·1 answer
  • A basketball player makes a jump shot. The 0.600-kg ball is released at a height of 2.01 m above the floor with a speed of 7.26
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!