Answer:
a) 2.5m/s
b) 0.91m/s
c) 0m/s
Explanation:
Average velocity can be said to be the ratio of the displacement with respect to time.
Average speed on the other hand is the ratio of distance in relation to time
Thus, to get the average velocity for the first half of the swim
V(average) = displacement of first trip/time taken on the trip
V(average) = 50/20
V(average) = 2.5m/s
Average velocity for the second half of the swim will be calculated in like manner, thus,
V(average) = 50/55
V(average) = 0.91m/s
Average velocity for the round trip will then be
V(average) = 0/75, [50+25]
V(average) = 0m/s
Answer:
D
Explanation:
pressure change have nothing to do with the spontaneity.
Entropy change , enthalpy change , temperature have roles in deciding spontaneity.
The reading on the scale is the tension on the string that connects the two objecst. In order to support the blocks it must pull the weights by a force magnitude of W. So, the tension of the rope is W. Therefore, the reading on the scale is W, D.
I hope my answer has come to your help. Thank you for posting your question here in Brainly. We hope to answer more of your questions and inquiries soon. Have a nice day ahead!
Weight = (mass) x (gravity)
Acceleration of gravity on Earth = 9.8 m/s²
Weight on Earth = (mass) x (9.8 m/s²)
Divide each side by (9.8 m/s²): Mass = (weight) / (9.8 m/s²)
Mass = (650 N) / (9.8 m/s²)
Mass = 66.33 kg (rounded)
We can first calculate the net force using the given information.
By Newton's second law, F(net) = ma:
F(net) = 25 * 4.3 = 107.5
We can now calculate the frictional force, f, which is working against the applied force, F(app) (this is why the net force is a bit lower):
f = F(net) - F(app) = 150 - 107.5 = 42.5 N
Now we can calculate the coefficient of friction, u, using the normal force, F(N):
f = uF(n) --> u = f/F(N)
u = 42.5/[25(9.8)]
u = 0.17