Answer:The answer must be The weight of the man and the vertical distance moved.
Explanation: you calculate it by the force you applied times the distance you moved
Answer:
α = (ω²)/8π
Explanation:
The angular acceleration(α) of the carousel can be determined by using rotational
kinematics:
ω² =ωo² + 2αθ
Let's make α the subject of this equation ;
ω² - ωo² = 2αθ
α = (ω² −ωo²)/2θ
Now, from the question, since initially at rest, thus, ωo = 0
Also,since 2 revolutions, thus, θ = 2 x 2π = 4π since one revolution is 2π
Plugging in the relevant values to get ;
α = (ω²)/2(4π)
α = (ω²)/8π
<h2>Answer: at an angle

below the inclined plane.
</h2>
If we draw the <u>Free Body Diagram</u> for this situation (figure attached), taking into account only the gravity force in this case, we will see the weight
of the block, which is directly proportional to the gravity acceleration
:

This force is directed vertically at an angle
below the inclined plane, this means it has an X-component and a Y-component:



Therefore the correct option is c
<span>A student hears a police siren.
The arithmetic of the Doppler Effect shows that if the distance between
the source and observer is changing, then the observer hears a different
frequency compared to the frequency actually radiating from the source.
Thus the first four choices would cause the student to hear a different
frequency:
-- if the student walked toward the police car
-- if the student walked away from the police car
-- if the police car moved toward the student
-- if the police car moved away from the student
The last two choices wouldn't affect the frequency heard by the student,
since the perceived frequency of a sound doesn't depend on its intensity.
-- if the intensity of the siren increased
-- if the intensity of the siren decreased.</span>