Answer:
So Tammy must move with speed 4.76 m/s in opposite direction of Jackson
Explanation:
As per law of conservation of momentum we know that there is no external force on it
So here we can say that initial momentum of the system must be equal to the final momentum of the system
now we have

final they both comes to rest so here we can say that final momentum must be zero
now we have


Kinetic energy. I hope that helps
Answer:
(D) The weight of the space station and the gravitational force of the space station on the earth.
Explanation:
In both A and B , both the forces act in the same direction ( downwards ) , so they can not be action- reaction force .
In the option C , weight of a astronaut can only be reaction force of gravitational force exerted on the earth by astronaut. Both astronaut and the earth pull each other with equal and opposite force. So option D is correct.
Answer:
514 cal
Explanation:
In order to calculate the lost heat by the amount of water you first take into account the following formula:
(1)
Q: heat lost by the amount of water = ?
m: mass of the water
c: specific heat of water = 1cal/g°C
T2: final temperature of water = 11°C
T1: initial temperature = 12°C
The amount of water is calculated by using the information about the density of water (1g/ml):

Then, you replace the values of all parameters in the equation (1):

The amount of water losses a heat of 514 cal
I don't know what the exact word is, but I do know that the bigger an objects mass is the more it will attract other objects toward it, mainly smaller objects with less mass. it might be gravity or something around those lines....is it a multiple choice question?