The solution for this problem is:
(10 x 9.8) = 98.1 m/sec^2 acceleration. Time, to travel 9.4cm or (.094m.), at acceleration of 98m/sec^2
= sqrt(2d/a), = sqrt (98.1 m/sec^2/0.094m) = 32.3050619 sec per cycle
Frequency = (w/2pi), = 32.3050619/2pi
= 32.3050619/6.28318531
= 5.14 Hz would be the answer
Answer:
0.1 m
Explanation:
It is given that,
Mass of the object, m = 350 g = 0.35 kg
Spring constant of the spring, k = 5.2 N/m
Amplitude of the oscillation, A = 10 cm = 0.1 m
Frequency of a spring mass system is given by :
Time period:
Answer:

Explanation:
Given that initially ball moves in the horizontal direction ,it means that the velocity in the vertical direction is zero.
Horizontal distance = 13 m
Vertical distance = 57 cm
Lets take time to cover 57 cm distance in vertical direction is t.
We know that g is the constant acceleration in the vertical direction so we can apply the equation of motion in the vertical direction.

Here 
S= 57 cm

t=0.34 s
Now in the horizontal direction

Here x=13 m
t= 0.34 s
So


So the initial speed of ball is 38.13 m/s.
Answer:
Since the spring mass system will execute simple harmonic motion the position as a function of time can be written as
'A' is the amplitude = 6 inches (given)
is the natural frequency of the system
At equilibrium we have

Applying values we get

thus natural frequency equals

Thus the equation of motion becomes

At time t=0 since mass is at it's maximum position thus we have

Thus the position of mass at the given times is as follows
1) at

2) at

3) at

4) at

5) at
