answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Pani-rosa [81]
2 years ago
14

An average human weighs about 600 N

Physics
1 answer:
NemiM [27]2 years ago
4 0

Answer:

The distance between them, x = 5809.47 m

Explanation:

Given,

The average weight of a human, w = 600 N

The charge carried by the humans, q = 1.5 C

If 600 N of force acts between two opposite charges, the distance between the charges can be derived from the Coulomb's laws of force,

                          <em>F=\frac{1}{4\pi\epsilon_{0}}\frac{qq}{x^{2}}</em>

Where,

                         \frac{1}{4\pi\epsilon_{0}} = 9 x 10⁹ N m² C⁻²

Therefore

                          x² = 9 x 10⁹ X 1.5² / 600

                              = 33750000

                           x = 5809.46 m

Hence, the distance between the humans should be, x = 5809.47 m

You might be interested in
Compare these two collisions of a PE student with a wall.
Stolb23 [73]

1) The variable that is different in the two cases is \Delta t, the duration of the collision

2) The change in momentum is the same in the two cases

3) The impulse is the same in the two cases

4) Case B will experience a greater force

Explanation:

1)

The variable that is different in the two cases is \Delta t, the duration of the collision.

In fact, in the first case the wall is padded: this means that the collision will be "softer" and therefore will last longer, so the duration of the collision, \Delta t, will be larger.

In the second case instead, the wall is unpadded: this means that the collision is "harder" and so it will last less time, therefore the duration of the collision \Delta t will be smaller.

2)

The change in momentum in the two cases is the same.

In fact, the change in momentum is given by:

\Delta p = m(v-u)

where:

m is the mass of the student

u is the initial velocity

v is the final velocity

In both cases, we have:

m = 75 kg

u = 8 m/s

v = 0 (they both comes to rest)

Therefore, the change in momentum is

\Delta p = (75)(0-8)=-600 kg m/s

3)

The impulse in the two cases is the same.

In fact, impulse is defined as the product of force applied, F, and duration of the collision, \Delta t:

J=F \Delta t

However, the force can be rewritten as product of mass (m) and acceleration (a), according to Newton's second law:

F=ma

So the impulse is

J=ma\Delta t

The acceleration can be rewritten as rate of change of velocity:

a=\frac{\Delta v}{\Delta t}

So the impulse becomes

J=m\frac{\Delta v}{\Delta t}\Delta t = m\Delta v

So, the impulse is equal to the change in momentum: and since in the two cases the change in momentum is the same, the impulse is the same as well.

4)

The force in the collision is related to the impulse by

J=F\Delta t

where

J is the impulse

F is the force

\Delta t is the duration of the collision

The equation can be rewritten as

F=\frac{J}{\Delta t}

In the two situations described in the problem (A and B), we already said that the impulse is the same (because the change in momentum is the same). However, in case A (padded wall) the time \Delta t is longer, while in case B (unpadded wall) the time \Delta t is shorter: since the force F is inversely proportional to the duration of the collision, this means that in case B the student will experience a greatest force compared to case A.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

3 0
2 years ago
The engine in an imaginary sports car can provide constant power to the wheels over a range of speeds from 0 to 70 miles per hou
bekas [8.4K]

Answer:

2.2 seconds

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration

Converting mph to m/s

29\ mph=29\times 0.44704=12.96\ m/s

58\ mph=58\times 0.44704=25.93\ m/s

v=u+at\\\Rightarrow a=\frac{v-u}{t}\\\Rightarrow a=\frac{12.96-0}{1.1}\\\Rightarrow a=11.78\ m/s^2

Considering this acceleration to be constant

v=u+at\\\Rightarrow t=\frac{v-u}{a}\\\Rightarrow t=\frac{25.93-0}{11.78}\\\Rightarrow t=2.20\ s

Time it would take to go from zero to 58.0 mph is 2.2 seconds

6 0
2 years ago
A cubical shell with edges of length a is positioned so that two adjacent sides of one face are coincident with the +x and +y ax
Bingel [31]

Answer:

Q = ba⁴ * ε₀

Explanation:

From Gauss's Law, we know that

flux Φ = Q / ε₀

where ε₀ = 8.85e-12 C²/N·m²

and also,

Φ = EAcosθ

The field is directed along the x-axis, so that all of the flux passes through the side of the cube at x = a. This means that θ = 0º, and thus

Φ = EAcos0

Φ = EA

E = bx² meanwhile, we are interested in the point where x = a, so we substitute and then

E = ba²

Since A = a² for the cube face, we have

Q / ε₀ = E * A

Q / ε₀ = ba² * a²

so that

Q = ba⁴ * ε₀

5 0
2 years ago
In Paul Hewitt's book, he poses this question: "If the forces that act on a bullet and the recoiling gun from which it is fired
Sauron [17]
They have different accelerations because of their masses. According to Newton's Second Law, an objects acceleration is inversely proportional to its mass. Therefore the object with the larger mass, in this case the gun, will have a smaller acceleration. In the same way, the less massive object, being the bullet, will have a higher acceleration.

Hope this helps :)
4 0
2 years ago
An object at rest is suddenly broken apart into two fragments by an explosion one fragment acquires twice the kinetic energy of
satela [25.4K]
<span>First, we use the kinetic energy equation to create a formula: Ka = 2Kb 1/2(ma*Va^2) = 2(1/2(mb*Vb^2)) The 1/2 of the right gets cancelled by the 2 left of the bracket so: 1/2(ma*Va^2) = mb*Vb^2 (1) By the definiton of momentum we can say: ma*Va = mb*Vb And with some algebra: Vb = (ma*Va)/mb (2) Substituting (2) into (1), we have: 1/2(ma*Va^2) = mb*((ma*Va)/mb)^2 Then: 1/2(ma*Va^2) = mb*(ma^2*Va^2)/mb^2 We cancel the Va^2 in both sides and cancel the mb at the numerator, leving the denominator of the right side with exponent 1: 1/2(ma) = (ma^2)/mb Cancel the ma of the left, leaving the right one with exponent 1: 1/2 = ma/mb And finally we have that: mb/2 = ma mb = 2ma</span>
8 0
2 years ago
Other questions:
  • A positive charge moving up enters a magnetic field pointing out of the screen. What is the direction of the magnetic force on t
    13·2 answers
  • Question 5 of 5: Someone texting or talking spans an average of 27 seconds after they put the phone down are still thinking abou
    15·1 answer
  • As a moon follows its orbit around a planet, the maximum grav- itational force exerted on the moon by the planet exceeds the min
    9·1 answer
  • A jogger accelerates from rest to 3.0 m/s in 2.0 s. A car accelerates from 38.0 to 41.0 m/s also in 2.0 s. (a) Find the accelera
    12·1 answer
  • 2. The water is then heated to its boiling point. Calculate the specific latent heat of
    9·1 answer
  • The Bohr model of the hydrogen atom pictures the electron as a tiny particle moving in a circular orbit about a stationary proto
    6·1 answer
  • In a diffraction grating experiment, light of 600 nm wavelength produces a first-order maximum 0.350 mm from the central maximum
    7·2 answers
  • If the soccer player runs with a speed of 4.6m/s, how long does it take him to run 60m?
    15·2 answers
  • The difference between the two molar specific heats of a gas is 8000J/kgK. If the ratio of the two specific heats is 1.65, calcu
    5·1 answer
  • A major disturbance that caused the ecosystem to stabilize at a new equilibrium?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!