Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions here.
The moment of the resultant of these two forces with respect to O 376 lb-ft CCW which is <span>about moment center point O.</span>
Answer:
Average density of Sun is 1.3927
.
Given:
Radius of Sun = 7.001 ×
km = 7.001 ×
cm
Mass of Sun = 2 ×
kg = 2 ×
g
To find:
Average density of Sun = ?
Formula used:
Density of Sun = 
Solution:
Density of Sun is given by,
Density of Sun = 
Volume of Sun = 
Volume of Sun = ![\frac{4}{3} \times 3.14 \times [7.001 \times 10^{10}]^{3}](https://tex.z-dn.net/?f=%5Cfrac%7B4%7D%7B3%7D%20%5Ctimes%203.14%20%5Ctimes%20%5B7.001%20%5Ctimes%2010%5E%7B10%7D%5D%5E%7B3%7D)
Volume of Sun = 1.436 ×

Density of Sun = 
Density of Sun = 1.3927 
Thus, Average density of Sun is 1.3927
.
Global warming is what will happen
Answer:
b = 0.6487 kg / s
Explanation:
In an oscillatory motion, friction is proportional to speed,
fr = - b v
where b is the coefficient of friction
when solving the equation the angular velocity has the form
w² = k / m - (b / 2m)²
In this exercise we are given the angular velocity w = 1Hz, the mass of the body m = 0.1 kg, and the spring constant k = 5 N / m. Therefore we can disperse the coefficient of friction
let's call
w₀² = k / m
w² = w₀² - b² / 4m²
b² = (w₀² -w²) 4 m²
Let's find the angular velocities
w₀² = 5 / 0.1
w₀² = 50
w = 2π f
w = 2π 1
w = 6.2832 rad / s
we subtitute
b² = (50 - 6.2832²) 4 0.1²
b = √ 0.42086
b = 0.6487 kg / s
A radio wave is generated by a transmitter and then detected by a receiver. An antenna allows a radio transmitter to send energy into space and a receiver to pick up energy from space. Transmitters and receivers are typically designed to operate over a limited range of frequencies