answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
goblinko [34]
1 year ago
15

The spectrum of Star A has an absorption line of hydrogen at 660.0 nm. The spectrum of Star B has an absorption line at 666 nm.

The wavelength of this transition in the laboratory is 656.2 nm. What can I say about Star A and B?
Physics
1 answer:
rjkz [21]1 year ago
6 0

Answer:

The stars are moving away from us.

Explanation:

The observed wavelengths of hydrogen transition for stars A and B (660.0 nm and 666 nm respectively) are greater than that observed in the laboratory (656.2 nm). The observed long wavelengths for the stars means that the light from the stars is red-shifted.

According to the Doppler effect, red-shifted light means that the source is moving a way from the observer; therefore, we arrive at the conclusion that the stars A and B are moving away from us.

You might be interested in
By means of a rope whose mass is negligible, two blocks are suspended over a pulley, as the drawing shows. The pulley can be tre
tankabanditka [31]

Answer:

Mass of the pull is 77 kg

Explanation:

Here we have for

Since  the rope moves along with pulley, we have

For the first block we have

T₁ - m₁g = -m₁a = -m₁g/4

T₁ =  3/4(m₁g) = 323.4 N

Similarly, as the acceleration of the second block is the same as the first block but in opposite direction, we have

T₂ - m₂g = m₂a = m₂g/4

T₂ =  5/4(m₂g) = 134.75 N

T₂r - T₁r = I·∝ = 0.5·M·r²(-α/r)

∴ M = -\frac{2}{a} (T_2-T_1)

M = -\frac{2}{2.45} (134.75-323.4) = 77 \, kg

Mass of the pull = 77 kg.

5 0
2 years ago
The measure of one of the small angles of a right triangle is 45 less than twice the measure of the other small angle. Find the
astra-53 [7]

Answer:

The other two small angles are 45° each

Explanation:

Given data in the problem:

The triangle is a right triangle

thus,

one of the angle is 90°

now,

let the other two angles be x and y

thus,

it is given that:

x = 2y - 45°

also in a triangle

sum of all the angles = 180°

thus,

x + y + 90° = 180°

or

x + y = 90°

now, substituting the  value of x from the above relation between x and y, we get

2y - 45° + y = 90°

or

3y = 135°

or

y = 45°

also,

x = 2y - 45°

or

x = 2 × (45°) - 45°

or

x = 45°

hence, <u>the other two small angles are 45° each</u>

4 0
2 years ago
The gravitational field strength at a distance R from the center of moon is gR. The satellite is moved to a new circular orbit t
3241004551 [841]

Answer:

g'=\frac{g__R}{4}

Explanation:

Given:

  • gravitational field strength of moon at a distance R from its center, g__R
  • Distance of the satellite from the center of the moon, h=2R

<u>Now as we know that the value of gravity of any heavenly body is at height h is given as:</u>

g'=g__{R}} \times \frac{R^2}{(2R)^2}

g'=\frac{g__R}{4}

∴The gravitational field strength will become one-fourth of what it is at the surface of the moon.

6 0
2 years ago
To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
Lesechka [4]

Answer:

             E = k Q / [d(d+L)]

Explanation:

As the charge distribution is continuous we must use integrals to solve the problem, using the equation of the elective field

       E = k ∫ dq/ r² r^

"k" is the Coulomb constant 8.9875 10 9 N / m2 C2, "r" is the distance from the load to the calculation point, "dq" is the charge element  and "r^" is a unit ventor from the load element to the point.

Suppose the rod is along the x-axis, let's look for the charge density per unit length, which is constant

         λ = Q / L

If we derive from the length we have

        λ = dq/dx       ⇒    dq = L dx

We have the variation of the cgarge per unit length, now let's calculate the magnitude of the electric field produced by this small segment of charge

        dE = k dq / x²2

        dE = k λ dx / x²

Let us write the integral limits, the lower is the distance from the point to the nearest end of the rod "d" and the upper is this value plus the length of the rod "del" since with these limits we have all the chosen charge consider

        E = k \int\limits^{d+L}_d {\lambda/x^{2}} \, dx

We take out the constant magnitudes and perform the integral

        E = k λ (-1/x){(-1/x)}^{d+L} _{d}

   

Evaluating

        E = k λ [ 1/d  - 1/ (d+L)]

Using   λ = Q/L

        E = k Q/L [ 1/d  - 1/ (d+L)]

 

let's use a bit of arithmetic to simplify the expression

     [ 1/d  - 1/ (d+L)]   = L /[d(d+L)]

The final result is

     E = k Q / [d(d+L)]

3 0
1 year ago
A long thin uniform rod of length 1.50 m is to be suspended from a frictionless pivot located at some point along the rod so tha
Dvinal [7]

Answer:

0.087 m

Explanation:

Length of the rod, L = 1.5 m

Let the mass of the rod is m and d is the distance between the pivot point and the centre of mass.

time period, T = 3  s

the formula for the time period of the pendulum is given by

T = 2\pi \sqrt{\frac{I}{mgd}}    .... (1)

where, I is the moment of inertia of the rod about the pivot point and g is the acceleration due to gravity.

Moment of inertia of the rod about the centre of mass, Ic = mL²/12

By using the parallel axis theorem, the moment of inertia of the rod about the pivot is

I = Ic + md²

I = \frac{mL^{2}}{12}+ md^{2}

Substituting the values in equation (1)

3 = 2 \pi \sqrt{\frac{\frac{mL^{2}}{12}+ md^{2}}{mgd}}

9=4\pi^{2}\times \left ( \frac{\frac{L^{2}}{12}+d^{2}}{gd} \right )

12d² -26.84 d + 2.25 =  0

d=\frac{26.84\pm \sqrt{26.84^{2}-4\times 12\times 2.25}}{24}

d=\frac{26.84\pm 24.75}{24}

d = 2.15 m , 0.087 m

d cannot be more than L/2, so the value of d is 0.087 m.

Thus, the distance between the pivot and the centre of mass of the rod is 0.087 m.

3 0
1 year ago
Other questions:
  • Which of the following devices would you expect to consume the most energy for each hour that it operates? a portable tape recor
    7·2 answers
  • A bike first accelerates from 0.0 m/s to 5.0 m/s in 4.5s, then continues at this constant speed for another 4.5 s. What is the t
    13·2 answers
  • An electron and a proton are held on an x axis, with the electron at x = + 1.000 m and the proton at x = - 1.000 m.how much work
    5·1 answer
  • Your friend states in a report that the average time required to circle a 1.5-mi track was 65.414 s. This was measured by timing
    15·1 answer
  • Many gates at railway crossings are operated manually. A typical gate consists of a rod usually made of iron, consisting heavy w
    5·1 answer
  • A simple pendulum 0.64m long has a period of 1.2seconds. Calculate the period of a similar pendulum 0.36m long in the same locat
    8·1 answer
  • If a negative charge is initially at rest in an electric field, will it move toward a region of higher potential or lower potenti
    8·1 answer
  • Shows the position-versus-time graph of a particle in SHM. Positive direction is the direction to the right.
    6·1 answer
  • If the potential energy of the product is less than that of the reactants, the energy released when an activated complex forms a
    15·2 answers
  • A car travels around an oval racetrack at constant speed. The car is accelerating:________.
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!