answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
1 year ago
10

Your latest invention is a car alarm that produces sound at a particularly annoying frequency of 3600 Hz . To do this, the car a

larm circuitry must produce an alternating electric current of the same frequency. That's why your design includes an inductor and capacitor in series. The maximum voltage across the capacitor is to be 12.0 V . To produce a sufficiently loud sound, the capacitor must store an amount of energy equal to 1.55×10−2 J . What values of capacitance and inductance should you choose for your car-alarm circuit?
Physics
1 answer:
Alex17521 [72]1 year ago
6 0

Answer:

The capacitance and the inductance can choose for a car-alarm circuit are

C = 215.27 μF

L = 9.078 μH

Explanation:

V =12.0 V, E = 1.55*10^2 J, f = 3600 Hz

To determine the capacitance can use the equation

U_c= \frac{1}{2}*C*V^2

Solve to C'

C = \frac{U_c*2}{V^2}=\frac{1.55x10^2J*2}{12.0^2V}

C=215.27 uF

To find the inductance can use the frequency of the circuit

f = \frac{1}{2\pi* \sqrt{C*L} }

Solve to L'

L = \frac{1}{4\pi^2*f^2*C}=\frac{1}{4\pi^2*3600^2*215.27 uF}}

L = 9.078 uH

You might be interested in
John runs 1.0 m/s at first, and then accelerates to 1.6 m/s during
erastova [34]

Answer: 0.13m/s^2

Explanation:

Formula: a=\frac{V_2-V_1}{t}

Where;

a = acceleration

V2 = final velocity

V1 = initial velocity

t = time

If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.

a=\frac{1.6m/s-1.0m/s}{4.5s}

a=\frac{0.6m/s}{4.5s}

a=0.13m/s^2

7 0
2 years ago
Read 2 more answers
A jetboat is drifting with a speed of 5.0\,\dfrac{\text m}{\text s}5.0 s m ​ 5, point, 0, start fraction, start text, m, end tex
love history [14]

The question is incomplete. Here is the entire question.

A jetboat is drifting with a speed of 5.0m/s when the driver turns on the motor. The motor runs for 6.0s causing a constant leftward acceleration of magnitude 4.0m/s². What is the displacement of the boat over the 6.0 seconds time interval?

Answer: Δx = - 42m

Explanation: The jetboat is moving with an acceleration during the time interval, so it is a <u>linear</u> <u>motion</u> <u>with</u> <u>constant</u> <u>acceleration</u>.

For this "type" of motion, displacement (Δx) can be determined by:

\Delta x = v_{i}.t + \frac{a}{2}.t^{2}

v_{i} is the initial velocity

a is acceleration and can be positive or negative, according to the referential.

For Referential, let's assume rightward is positive.

Calculating displacement:

\Delta x = 5(6) - \frac{4}{2}.6^{2}

\Delta x = 30 - 2.36

\Delta x = - 42

Displacement of the boat for t=6.0s interval is \Delta x = - 42m, i.e., 42 m to the left.

8 0
2 years ago
An older camera has a lens with a focal length of 60mm and uses 34-mm-wide film to record its images. Using this camera, a photo
lesya692 [45]

Answer:

24.71 mm

Explanation:

Distance is proportional to focal length, so

d∝f

which means

\frac{d'_1}{d'_2}=\frac{f_1}{f_2}

Magnification of first lens

M_2=-\frac{d'_1}{d_1}

                   and

M_2=\frac{h'_1}{h_1}

Similarly, magnification of second lens

M_2=-\frac{d'_2}{d_1}

                   and

M_2=\frac{h'_2}{h_1}

From the above equations we get

\frac{M_1}{M_2}=\frac{d'_1}{d_2'}

                   and

\frac{M_1}{M_2}=\frac{h'_1}{h_2'}

which means,

\frac{d'_1}{d_2'}=\frac{h'_1}{h_2'}

and

\frac{d'_1}{d_2'}=\frac{f_1}{f_2}

So, we get

\frac{f_1}{f_2}=\frac{h'_1}{h_2'}\\\Rightarrow f_2=f_1\times\frac{h_2'}{h'_1}\\\Rightarrow f_2=60\times\frac{14}{34}=24.71\ mm

∴ Focal length should this camera's lens is 24.71 mm

6 0
2 years ago
Here are the positions at three different times for a bee in flight (a bee's top speed is about 7 m/s). Time 6.6 s 6.9 s 7.2 s P
Ber [7]

Answer:

(A.) (- 4.33, 6.33 , 0); (B.) (- 3.66, 7.5, 0); (C.) average at (A) (- 4.33, 6.33 , 0) ; (D.) (- 0.2165, 0.3165, 0)

Explanation:

Given the following :

Time - - - - - - - 6.6s - - - - - - - - - 6.9s - - - - - 7.2s

Position - (1.8,5.0,0) - (0.5,6.9,0) - - (−0.4,9.5,0)

(a) Between 6.6 s and 6.9 s, what was the bee's average velocity?

Vavg = Distance / time

[(0.5,6.9,0) - (1.8,5.0,0)] / 6.9 - 6.6

Vavg = [(0.5 - 1.8), (6.9 - 5.0), (0 - 0)] / 0.3

Vavg = - 1.3 / 0.3, 1.9/0.3, 0/3

Vavg = (- 4.33, 6.33 , 0)

b) Between 6.6 s and 7.2 s, what was the bee's average velocity?

Vavg = [(−0.4,9.5,0) - (1.8,5.0,0)] / 7.2 - 6.6

Vavg = - 2. 2/0.6, 4.5/0.6, 0/0.6

Vavg = (- 3.66, 7.5, 0)

c.) Of the two averages (- 4.3, 6.3 , 0) is closer to the instantaneous Velocity at 6.6s

D.) (d) Using the best information available, what was the displacement of the bee during the time interval from 6.6 s to 6.65 s?

Displacement = Velocity * time

Vavg between 6.6 to 6.9 ; time = (6.65 - 6.6) = 0.05 s

= (- 4.33, 6.33 , 0) * 0.05

= (- 0.2165, 0.3165, 0)

5 0
2 years ago
The magnetic field around a current-carrying wire is ________proportional to the current and _________proportional to the distan
PSYCHO15rus [73]

Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u>  proportional to the current and <u><em>inversely</em></u>  proportional to the distance from the wire.  If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.

Explanation:

Magnetic field around a long current carrying wire is given by

B=\frac{\mu _o I}{2\pi r}

where B= magnetic field

           \mu _o= permeability of free space

           I= current in the long wire and

           r= distance from the current carrying wire

Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u>  proportional to the current and <u><em>inversely</em></u>  proportional to the distance from the wire.  

Now if I'=3I and r'=2r then magnetic field B' is given by

B'=\frac{\mu _oI'}{2\pi r'}=\frac{\mu _o3I}{2\pi 2r}=1.5B

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.

   

7 0
2 years ago
Read 2 more answers
Other questions:
  • When a warm air mass catches up with a cold air mass, forming a warm front, the warm air slides over the top of the cold air, be
    12·1 answer
  • Leanne is riding a bike. The forward force from her pedalling is 18N. There is a backward force of 6N from friction and a backwa
    7·3 answers
  • A coil 4.00 cm in radius, containing 500 turns, is placed in a uniform magnetic field that varies with time according to B = (0.
    5·2 answers
  • At room temperature, an oxygen molecule, with mass of 5.31x10-26kg , typically has a kinetic energy of about 6.21x10-21J.How fas
    15·1 answer
  • A giant wall clock with diameter d rests vertically on the floor. The minute hand sticks out from the face of the clock, and its
    10·1 answer
  • A bodybuilder lifts a 10 N weight a distance of 2.5 m. <br> How much energy has the weight gained?
    12·1 answer
  • José and Laurel measured the length of a stick's shadow during the day. Without knowing the length of the stick, which of their
    10·1 answer
  • Grace, Erin, and Tony are on a seesaw. Grace has a mass of 45kg and is seated 0.7m to the left of the fulcrum. Nicole has a mass
    13·1 answer
  • The burning of fossil fuels contributes to the addition of greenhouse gases to the atmosphere. These gases trap thermal energy i
    7·2 answers
  • PLEASE HELPPP 100 POINTS HURRY !!!!Which diagram best illustrates the magnetic field of a bar magnet? A bar magnet with a north
    13·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!