Answer:
24.348mm
Explanation:
NB: I'll be attaching pictures so as to depict missing mathematical expressions or special characters which are not easily found on keyboards
K = d / €^n
Note : d represents the greek alphabet epsilion.
K = 345 / 0.02⁰.²² = 816mPa
The true strain based upon the stress of 414mPa =
€= (€/k)^1/n = (414/816)¹/⁰.²² = 0.04576
However the true relationship between true strain and length is given by
€ = ln(Li/Lo)
Making Li the subject of formula by rearranging,
Li = Lo.e^€
Li = 520e⁰.⁰⁴⁵⁷⁶
Li = 544.348mm
The amount of elongation can be calculated from
Change in L = Li - Lo = 544.348 - 520 change in L = 24.348mm.
Answer:Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire. If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
Explanation:
Magnetic field around a long current carrying wire is given by

where B= magnetic field
permeability of free space
I= current in the long wire and
r= distance from the current carrying wire
Thus, The magnetic field around a current-carrying wire is <u><em>directly</em></u> proportional to the current and <u><em>inversely</em></u> proportional to the distance from the wire.
Now if I'=3I and r'=2r then magnetic field B' is given by

Thus If the current triples while the distance doubles, the strength of the magnetic field increases by <u><em>one and half (1.5)</em></u> times.
To answer the problem we would be using this formula which isv = sqrt(T/(m/L))
v = sqrt(100 N / [(0.100 kg)/(1.0 m)])
v = 31.62 m/s
v = fλ
31.62 m/s = (95 Hz)(λ)
λ = 0.333 m
For every wavelength along a string there will be 2 antinodes.
1.0 m / 0.333 m = 3
3 * 2 = 6 antinodes
6 + 1 = 7 nodes
To solve this problem we will use the kinematic equations of angular motion in relation to those of linear / tangential motion.
We will proceed to find the centripetal acceleration (From the ratio of the radius and angular velocity to the linear velocity) and the tangential acceleration to finally find the total acceleration of the body.
Our data is given as:
The angular speed
The angular acceleration
The distance
The relation between the linear velocity and angular velocity is

Where,
r = Radius
Angular velocity
At the same time we have that the centripetal acceleration is






Now the tangential acceleration is given as,

Here,
Angular acceleration
r = Radius


Finally using the properties of the vectors, we will have that the resulting component of the acceleration would be



Therefore the correct answer is C.
<h2>The K.E of the charge is 1.02 x 10⁻¹⁷ J</h2>
Explanation:
When the charge of 2e is placed in between the plates .
The force applied on this charge by plates is = q E
here q is the magnitude of charge = 2 e = 2 x 1.6 x 10⁻¹⁹ C
and E is the magnitude of electric field intensity
The work done = Force x displacement
Thus W = q E x S
here S is displacement
Therefore W = 2 x 1.6 x 10⁻¹⁹ x 4 x 8
= 1.02 x 10⁻¹⁷ J
This work will be converted into the kinetic energy of charge .
Thus K.E = 1.02 x 10⁻¹⁷ J