answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
OLga [1]
2 years ago
15

John runs 1.0 m/s at first, and then accelerates to 1.6 m/s during

Physics
2 answers:
erastova [34]2 years ago
7 0

Answer: 0.13m/s^2

Explanation:

Formula: a=\frac{V_2-V_1}{t}

Where;

a = acceleration

V2 = final velocity

V1 = initial velocity

t = time

If John runs 1.0 m/s first, we assume this is V1. He accelerates to 1.6 m/s; this is V2.

a=\frac{1.6m/s-1.0m/s}{4.5s}

a=\frac{0.6m/s}{4.5s}

a=0.13m/s^2

irakobra [83]2 years ago
4 0

Answer:.13

Explanation:

You might be interested in
An astronaut weighs 8.00 × 102 newtons on the sur- face of Earth. What is the weight of the astronaut 6.37 × 106 meters above th
kolbaska11 [484]

Answer:

mg=200.4 N.

Explanation:

This problem can be solved using Newton's law of universal gravitation: F=G\frac{m_{1}m_{2}}{r^{2}},

where F is the gravitational force between two masses m_{1} and m_{2}, r is the distance between the masses (their center of mass), and G=6.674*10^{-11}(m^{3}kg^{-1}s^{-2}) is the gravitational constant.

We know the weight of the astronout on the surface, with this we can find his mass. Letting w_{s} be the weight on the surface:

w_{s}=mg,

mg=8*10^{2},

m=(8*10^{2})/g,

since we now that g=9.8m/s^{2} we get that the mass is

m=81.6kg.

Now we can use Newton's law of universal gravitation

F=G\frac{Mm}{r^{2}},  

where m is the mass of the astronaut and M is the mass of the earth. From Newton's second law we know that

F=ma,

in this case the acceleration is the gravity so

F=mg, (<u>becarefull, gravity at this point is no longer</u> 9.8m/s^{2} <u>because we are not in the surface anymore</u>)

and this get us to

mg=G\frac{Mm}{r^{2}}, where mg is his new weight.

We need to remember that the mass of the earth is M=5.972*10^{24}kg and its radius is 6.37*10^{6}m.

The total distance between the astronaut and the earth is

r=(6.37*10^{6}+6.37*10^{6})=2(6.37*10^{6})=12.74*10^{6} meters.

Now we can compute his weigh:

mg=G\frac{Mm}{r^{2}},

mg=(6.674*10^{-11})\frac{(5.972*10^{24})(81.6)}{(12.74*10^{6})^{2}},

mg=200.4 N.

5 0
2 years ago
Because the soles of your shoes have cleats, you can exert a forward force of 100 N even on slippery ice. A 10-kg picnic cooler
Brilliant_brown [7]

Answer:

you must throw 3 snowballs

Explanation:

We can solve this exercise using the concepts of conservation of the moment, let's define the system as formed by the refrigerator and all the snowballs. Let's write the moment

Initial. Before bumping that refrigerator

          p₀ = n m v₀

Where n is the snowball number

Final. When the refrigerator moves

         pf = (n m + M) v

The moment is preserved because the forces during the crash are internal

        n m v₀ = (n m + M) v

        n m (v₀ - v) = M v

        n = M/m    v/(vo-v)

Let's look for the initial velocity of the balls, suppose the person throws them with the maximum force if it slides in the snow (F = 100N), let's use the second law and Newton

          F = m a

          a = F / m

The distance the ball travels from zero speed to maximum speed is the extension of the arm (x = 1 m), let's look kinematically for the speed of the balls when leaving the arm

          v₁² = v₀² + 2 a x

          v₁² = 0+ 2 (100/1) 1

          v₁ = 14.14 m / s

This is the initial speed for the crash

         v₀ = v = 14.14 m / s

  Let's calculate

           n = M/m   v/ (v₀-v)

           n = 10/1   3 / (14.14 -3)

          n = 2.7 balls

you must throw 3 snowballs

7 0
2 years ago
Jeff puts on a leather jacket over his sweater. The sweater becomes negatively charged. Which statements about Jeff’s situation
nikdorinn [45]

b. The sweater has a tendency to attract protons.

8 0
2 years ago
Read 2 more answers
A tennis ball of mass m=0.060 kg and speed v=25 m/s strikes a wall at a 45 angle and rebounds with the same velocity at 45°. Wha
Diano4ka-milaya [45]

To solve this problem we will apply the concepts related to the Impulse which can be defined as the product between mass and the total change in velocity. That is to say

p = m\Delta v

Here,

m = mass

\Delta v = Change in velocity

As we can see there are two types of velocity at the moment the object makes the impact,

the first would be the initial velocity perpendicular to the wall and the final velocity perpendicular to the wall.

That is to say,

v_i = vcos\theta

v_f = -v sin\theta

El angulo dado es de 45° y la velocidad de 25, por tanto

v_i = (25)cos(45) = 17.68m/s

v_f = -(25)sin(45) = -17.68m/s

The change of sign indicates a change in the direction of the object.

Therefore the impulse would be as

p = 0.060(-17.68-17.68)

p = -2.12kg \cdot m/s

The negative sign indicates that the pulse is in the opposite direction of the initial velocity.

3 0
2 years ago
In 1990, Dave Campos of the United States rode a special motorcycle called the Easyrider at an average speed of 518 km/h. Suppos
maks197457 [2]

The distance travelled during the given time can be found out by using the equations of motion.

The distance traveled during the time interval is "13810.8 m".

First, we will find the deceleration of the motorcycle by using the first <em>equation of motion</em>:

v_f=v_it+at\\\\

where,

vi = initial velocity = (518 km/h)(\frac{1\ h}{3600\ s})(\frac{1000\ m}{1\ km}) = 143.89 m/s

vf = final veocity = 60 % of 143.89 m/s = (0.6)(143.89 m/s) = 86.33 m/s

a = deceleration = ?

t =time interval = 2 min = 120 s

Therefore,

86.33\ m/s = 143.89\ m/s + a(120\ s)\\\\a = \frac{86.33\ m/s - 143.89\ m/s}{120\ s}

a = -0.48 m/s²

Now, we will use the second <em>equation of motion </em>to find out the distance traveled (s):

s = v_it+\frac{1}{2}at^2\\\\s = (143.89\ m/s)(120\ s)+\frac{1}{2}(-0.48\ m/s^2)(120\ s)^2\\\\s = 17266.8\ m - 3456\ m

<u>s = 13810.8 m = 13.81 km</u>

<u />

Learn more about the equations of motion here:

brainly.com/question/20594939?referrer=searchResults

The attached picture shows the equations of motion.

6 0
2 years ago
Other questions:
  • In the metric system, the appropriate unit for weight is the _____. gram newton newton/cm2 gram/cm3
    12·1 answer
  • A rod 150 cm long and of diameter 2.0 cm is subjected to an axial pull of 20 kn. if the modulus of elasticity of the material of
    13·1 answer
  • A 5.0 kg cannonball is dropped from the top of a tower. It falls for 1.6 seconds before slamming into a sand pile at the base of
    8·1 answer
  • SELECT TWO!!!!!!!!!!!!!!!!!! Two buses leave school moving in opposite directions. After 15 minutes, they are both 10 miles away
    11·2 answers
  • If you add 700 kJ of heat to 700 g of water at 70 degrees C, how much water is left in the container? The latent heat of vaporiz
    11·1 answer
  • A 50-kg platform diver hits the water below with a kinetic energy of 5000 Joules. The height (relative to the water) from which
    15·1 answer
  • A rectangular conducting loop of wire is approximately half-way into a magnetic field B (out of the page) and is free to move. S
    14·1 answer
  • PLEASE HELP John is rollerblading down a long, straight path. At time zero, there is a mailbox about 1 m in front of him. In the
    5·1 answer
  • Q1: A runner is jogging in a straight line at a steady vr= 6.8 km/hr. When the runner is L= 2.4 km from the finish line, a bird
    9·1 answer
  • A policeman kicks in a door with a force of 4500 N. What force does the door apply to the policeman’s leg?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!