I believe the answer is (4) The reason that is, is because if the exponents are the same like 10^2 and 10^3, you can add them. Then you would get 10^5. You can go ahead though and multiply 5.0 and 1.0. Now remember that with decimals you don't need the zeros behind the decimal point. So that simplifies it with just 5 x 1. Leaving you with 5.0 x 10^5.
Answer:
The equilibrium temperature is
21.97°c
Explanation:
This problem bothers on the heat capacity of materials
Given data
specific heat capacities
copper is Cc =390 J/kg⋅C∘,
aluminun Ca = 900 J/kg⋅C∘,
water Cw = 4186 J/kg⋅C∘.
Mass of substances
Copper Mc = 235g
Aluminum Ma = 135g
Water Mw = 825g
Temperatures
Copper θc = 255°c
Water and aluminum calorimeter θ1= 16°c
Equilibrium temperature θf =?
Applying the principle of conservation of heat energy, heat loss by copper equal heat gained by aluminum calorimeter and water
McCc(θc-θf) =(MaCa+MwCw)(θf-θ1)
Substituting our data into the expression we have
235*390(255-θf)=
(135*900+825*4186)(θf-16)
91650(255-θf)=(3574950)(θf-16)
23.37*10^6-91650*θf=3.57*10^6θf- +57.2*10^6
Collecting like terms and rearranging
23.37*10^6+57.2*10^6=3.57*10^6θf+91650θf
8.2*10^6=3.66*10^6θf
θf=80.5*10^6/3.6*10^6
θf =21.97°c
Answer:
Explanation:
the force of the rocket engine pushing it up, the force of gravity pulling it down, maybe some force of air resistance as the rocket goes fast, hmmm Free Body Diagrams (FBD) should have any and all forces on the model, unless they are negligible . or so slight they really make little difference in the total outcome.
Answer:
Explanation:
Volume of block A = 10 x 6 x 1 = 60 cm³
Mass of block A = 630 g
density of mass A = mass / density
= 630 / 60 = 10.5g / cm³
Volume of block B = 5 x 5 x 3 = 75 cm³
Mass of block A = 604 g
density of mass A = mass / density
= 604 / 75 = 8.05 g / cm³
Since density of both A and B are less than that of mercury , both will float in mercury.
Answer:
a. mass density
Explanation:
<em>Land and sea breeze that occur near the shore are due to the variation of mass density of air with change in temperature.</em>
- When the air gets heated it becomes rarer in density and thus rises up in the atmosphere and its space is occupied by a cooler and denser air that flows to the place.
<em>During the day the land is warmer than the sea so the sea breeze blows and during the night the water bodies are warmer than the land so the land breeze blows.</em>