answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vera_Pavlovna [14]
2 years ago
14

A truck collides with a car on horizontal ground. At one moment during the collision, the magnitude of the acceleration of the t

ruck is 12.7 m/s^2. The mass of the truck is 2490 kg and the mass of the car is 890 kg. Assume that the only horizontal forces on the vehicles during the collision are the forces they exert on one another.
Required:
What is the acceleration of the car at the same moment?
Physics
1 answer:
Mice21 [21]2 years ago
3 0

Answer:

The magnitude of the acceleration of the car is 35.53 m/s²

Explanation:

Given;

acceleration of the truck, a_t = 12.7 m/s²

mass of the truck, m_t = 2490 kg

mass of the car, m_c = 890 kg

let the acceleration of the car at the moment they collided = a_c

Apply Newton's third law of motion;

Magnitude of force exerted by the truck = Magnitude of force exerted by the car.

The force exerted by the car occurs in the opposite direction.

F_c = -F_t\\\\m_ca_c = -m_t a_t\\\\a_c =- \frac{m_ta_t}{m_c} \\\\a_c = -\frac{2490 \times 12.7}{890} \\\\a_c = - 35.53 \ m/s^2

Therefore, the magnitude of the acceleration of the car is 35.53 m/s²

You might be interested in
An astronomer observes that the wavelength of light from a distant star is shifted toward the red part of the visible spectrum.
balandron [24]

Answer:

The distance between the earth and the star is increasing.

Explanation:

When we observe an object and its electromagnetic radiation has been displaced to blue, it means that it is getting closer to us, causing the light waves it emits to get closer together and its wavelength to decrease towards blue, this is knowm as blueshift.

On the contrary, when an object is rapidly moving away from us, the light waves or electromagnetic radiation it emits have been stretched from their normal wavelength to a longer wavelength, towards the red part of the spectrum. This is known as redshift.

This phenomenon of changes in wavelength and frequency due to movement (whether the source approaches or moves away) is described by the Doppler effect.

So for this case because the light we perceive from the star has moved to the red part of the visible spectrum, we can conclude that it is moving away from the earth, and that the distance between the star and the earth is increasing.

7 0
2 years ago
A supersonic nozzle is also a convergent–divergent duct, which is fed by a large reservoir at the inlet to the nozzle. In the re
Lady_Fox [76]

Answer:

155.38424 K

2.2721 kg/m³

Explanation:

P_1 = Pressure at reservoir = 10 atm

T_1 = Temperature at reservoir = 300 K

P_2 = Pressure at exit = 1 atm

T_2 = Temperature at exit

R_s = Mass-specific gas constant = 287 J/kgK

\gamma = Specific heat ratio = 1.4 for air

For isentropic flow

\frac{T_2}{T_1}=\frac{P_2}{P_1}^{\frac{\gamma-1}{\gamma}}\\\Rightarrow T_2=T_1\times \frac{P_2}{P_1}^{\frac{\gamma-1}{\gamma}}\\\Rightarrow T_2=00\times \left(\frac{1}{10}\right)^{\frac{1.4-1}{1.4}}\\\Rightarrow T_2=155.38424\ K

The temperature of the flow at the exit is 155.38424 K

From the ideal equation density is given by

\rho_2=\frac{P_2}{R_sT_2}\\\Rightarrow \rho=\frac{1\times 101325}{287\times 155.38424}\\\Rightarrow \rho=2.2721\ kg/m^3

The density of the flow at the exit is 2.2721 kg/m³

4 0
2 years ago
A pitcher throws a 0.15 kg baseball so that it crosses home plate horizontally with a speed of 10 m/s. It is hit straight back a
Maru [420]

Answer:

-5.1 kg m/s

Explanation:

Impulse is the change in momentum.

Change in momentum= final momentum - initial momentum=mv_{2} +mv_{1}

Plugging in the values= -0.15*24 - (0.15*10) (The motion towards the pitcher is negative as the initial motion is considered to be positive)

Impulse=-5.1 kg m/s (-ve means that it is the impulse towards the pitcher)

4 0
2 years ago
At what angle should the axes of two Polaroids be placed so as to reduce the intensity of the incident unpolarized light to
mote1985 [20]

Answer:

Ok, the question is incomplete buy ill try to answer this in a general way.

Suppose that you have no-polarized light.

When that light hits one polaroid, the light becomes polarized along some line, and has an intensity I0.

Now, when polarized light hits a polaroid which axis is at an angle θ with respect to the polarization of the light, the intensity of the resulting beam is given by the Malus's law:

I(θ) = I0*cos^2(θ)

For example, if the axis of the polaroid is exactly the same as the one of the polarized light, then we have θ = 0°

and:

I(0°) = I0*cos^2(0°) = I0

So the intensity does not change.

Now, knowing the initial intensity, you can find the angle needed to get a given intensity.

For example, if the question was:

"At what angle should the axes of two Polaroids be placed so as to reduce the intensity of the incident unpolarized light to A"

We should solve:

I(θ) = A = I0*cos^2(θ)

(A/i0) = cos^2(θ)

√(A/I0) = cos(θ)

Acos(√(A/I0)) = θ

6 0
2 years ago
The superhero Green Lantern steps from the top of a tall building. He falls freely from rest to the ground, falling half the tot
ddd [48]

Answer:

1) its initial velocity is zero, 2) the downward direction as positive

3) h = 25.66 m

Explanation:

This is a free fall exercise.

1) with falls, its initial velocity is zero and the acceleration is constant throughout the path and is equal to the acceleration due to gravity.

2) a widely used selection to estimate the downward direction as positive

3) We know that for the second part of the fall

         y₀ -y = h/2   at  t = 1 s

        y = y₀ + v₁ t + ½ g t²

where v₁ is the initial velocity of this interval at the point y = h / 2

        v₁ t = (y -y₀) - ½ g t²

        v₁ = h / 2 - ½ g t²

        v₁ = h/2 - g/2

now let's write the equation for the first interval

         v₁² = v₀² + 2 g (y₁ - y₀)

       in this interval v₀ = 0

         v₁² = 2 g (y₁ -y₀)

         v₁² = 2g h/2

we write our system of equations

           v₁² = (h/2 - g/2)²

           v₁² = (2g h / 2)

       

           (h /2 - g/2)² = (2g h / 2)

            h² / 4 - 2  g/2  h/2 + (g/2)² = g h

            h² / 4 - g h/2 - g h + g²/4 = 0

            h² - 3 g h + g² =0              

            h² - 29.4 h +96.04 = 0

we solve the quadratic equation

            h = [29.4 ±√ (29.4² - 4 96.04)] / 2

            h = [29.4 ± 21.91] / 2

            h₁ = 25.66 m

            h₂ = 3.75 m

As the system takes more than 1 S to fall, the correct answer for the height is h = 25.66 m

6 0
2 years ago
Other questions:
  • Which of the following describes the electron sharing between hydrogen and fluorine A.Hydrogen and fluorine share one electron w
    12·1 answer
  • A 5.8 × 104-watt elevator motor can lift a total weight of 2.1 × 104 newtons with a maximum constant speed of
    12·1 answer
  • if m represents mass in kg, v represents speed in m/s, and r represents radius in m, show that the force F in the equation F=mv^
    9·1 answer
  • To practice Problem-Solving Strategy 23.2 for continuous charge distribution problems. A straight wire of length L has a positiv
    7·1 answer
  • A woman makes 50% more than her husband. Together they make $2500 each month? How much does the woman earn each month?a) $950b)
    6·1 answer
  • A motorcyclist heading east through a small Iowa town accelerates after he passes a signpost at x=0 marking the city limits. His
    15·1 answer
  • A rear window defroster consists of a long, flat wire bonded to the inside surface of the window. When current passes through th
    5·2 answers
  • A very long uniform line of charge has charge per unit length λ1 = 4.80 μC/m and lies along the x-axis. A second long uniform li
    14·1 answer
  • A toy of mass 0.190-kg is undergoing SHM on the end of a horizontal spring with force constant k = 350 N/m . When the toy is a d
    9·1 answer
  • The difference between the two molar specific heats of a gas is 8000J/kgK. If the ratio of the two specific heats is 1.65, calcu
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!