Answer:4.05 s
Explanation:
Given
First stone is drop from cliff and second stone is thrown with a speed of 52.92 m/s after 2.7 s
Both hit the ground at the same time
Let h be the height of cliff and it reaches after time t

For second stone
---2
Equating 1 &2 we get





Answer:
Explanation:
The specific heat of gold is 129 J/kgC
It's melting point is 1336 K
It's Heat of fusion is 63000 J/kg
Assuming that the mixture will be solid, the thermal energy to solidify the gold has to be less than that needed to raise the solid gold to the melting point. So,
The first is E1 = 63000 J/kg x 1.5 = 94500 J
the second is E2 = 129 J/kgC x 2 kg x (1336–1000)K = 86688 J
Therefore, all solid is not correct. You will have a mixture of solid and liquid.
For more detail, the difference between E1 and E2 is 7812 J, and that will melt
7812/63000 = 0.124 kg of the solid gold
Answer:
The force applied on the big piston is 1306.67 N
Explanation:
Given;
force applied on small piston, F₁ = 200 N
diameter of the small piston, d₁ = 4.37 cm
radius of the small piston, r₁ = d₁/2 = 2.185 cm
Area of the small piston, A₁ = πr₁² = π(2.185 cm)² = 15 cm²
Area of the big piston, A₂ = 98 cm²
The pressure of the piston is given by;

Where;
F₂ is the force on big piston

Therefore, the force applied on the big piston is 1306.67 N
Answer: a) 456.66 s ; b) 564.3 m
Explanation: The time spend to cover any distance a constant velocity is given by:
v= distance/time so t=distance/v
The slower student time is: t=780m/0.9 m/s= 866.66 s
For the faster students t=780 m/1,9 m/s= 410.52 s
Therefore the time difference is 866.66-410.52= 456.14 s
In order to calculate the distance that faster student should walk
to arrive 5,5 m before that slower student, we consider the follow expressions:
distance =vslower*time1
distance= vfaster*time 2
The time difference is 5.5 m that is equal to 330 s
replacing in the above expression we have
time 1= 627 s
time2 = 297 s
The distance traveled is 564,3 m
Answer:twice of initial value
Explanation:
Given
spring compresses
distance for some initial speed
Suppose v is the initial speed and k be the spring constant
Applying conservation of energy
kinetic energy converted into spring Elastic potential energy

When speed doubles

divide 1 and 2


Therefore spring compresses twice the initial value