Answer:
The graph should have velocity (v) on the y-axis and radius (r) on the x-axis. It will have a straight, horizontal line that goes across the graph.
Explanation:

Shown above is the formula for Kinetic Energy in rotational terms. I'm new to brain.ly so I couldn't insert the omega symbol, sorry about that. Omega can be replaced with
. Moment of Inertia (I) can be replaced with
.
The equation becomes
.
The r's cancel out, making the different radii negligible, causing a straight horizontal line.
Answer:
630cm/s
Explanation:
In simple harmonic motion, the tangential velocity is expressed mathematically as v = ὦr
ὦ is the angular velocity = 2πf
r is the radius of the disk
f is the frequency
Given the radius of disk = 10cm
frequency = 10Hz
v = 2πfr
v = 2π×10×10
v = 200π
v = 628.32 cm/s
The tangential velocity = 630cm/s ( to 2 significant figures)
Answer:
a) 
b) 
c) Compressing is easier
Explanation:
Given:
Expression of force:

where:



when the spring is stretched
when the spring is compressed
hence,

a)
From the work energy equivalence the work done is equal to the spring potential energy:
here the spring is stretched so, 
Now,
The spring constant at this instant:



Now work done:



b)
When compressing the spring by 0.05 m
we have, 
<u>The spring constant at this instant:</u>



Now work done:



c)
Since the work done in case of stretching the spring is greater in magnitude than the work done in compressing the spring through the same deflection. So, the compression of the spring is easier than its stretching.
Answer:
56400Joules
Explanation:
The quantity of heat required is expressed as;
Q = mL
m is the mass = 25g = 0.025kg
L is the latent heat of vaporization for steam = 2.256×10^6J/kg
Substitute into the formula as shown;
Q = 0.025×2.256×10^6
Q = 56400Joules
Hence the quantity of hear required is 56400Joules
Answer:
Explanation:
Potential due to a charged metallic sphere having charge Q and radius r on its surface will be
v = k Q / r . On the surface and inside the metallic sphere , potential is the same . Outside the sphere , at a distance R from the centre potential is
v = k Q / R
a ) On the surface of the shell , potential due to positive charge is
V₁ = 
On the surface of the shell , potential due to negative charge is
V₁ = 
Total potential will be zero . they will cancel each other.
b ) On the surface of the sphere potential
= 
= 22.5 x 10⁵ V
On the surface of the sphere potential due to outer shell
= 
= -9 x 10⁵
Total potential
=( 22.5 - 9 ) x 10⁵
= 13.5 x 10⁵ V
c ) In the space between the two , potential will depend upon the distance of the point from the common centre .
d ) Inside the sphere , potential will be same as that on the surface that is
13.5 x 10⁵ V.
e ) Outside the shell , potential due to both positive and negative charge will cancel each other so it will be zero.