<span>d. The parallaxes beyond a few thousand light years are
too small to be measured with common instruments.
I'm not sure that parallax can even be used out to a few
thousand light years.
The NEAREST star to Earth has the BIGGEST parallax.
The star is Alpha Centauri. It's only 4 light years away
from us, and its parallax is 0.000206 of a degree !
I have no idea how astronomers can measure angles
so small ... and that's the BIGGEST parallax angle of
ANY star.</span>
Answer:
a = 18.28 ft/s²
Explanation:
given,
time of force application, t= 10 s
Work = 10 Btu
mass of the object = 15 lb
acceleration, a = ? ft/s²
1 btu = 778.15 ft.lbf
10 btu = 7781.5 ft.lbf

m = 0.466 slug
now,
work done is equal to change in kinetic energy

now, acceleration of object


a = 18.28 ft/s²
constant acceleration of the object is equal to 18.28 ft/s²
Answer:
per mole of pentane = 3157.53 kJ/mol
Explanation:
Given:
Mass of pentane, m = 0.468 gram
Molar mass of pentane, M = 72.15
Now, mol of pentane, n = mass/M = 0.468/72.15 = 0.00648 mol of C5H12
Now,
ΔT = 23.65 - 20.45 = 3.2°C
Heat capacity of the calorimeter, C = 2.21 kJ/°C
Specific heat capacity of the water, Cp = 4.184 J/g.°C
Now,
the heat gained = the heat lost

also,


or

and
Now,

we have,
(Here negative sign depicts the release of the heat)
per mole of pentane =-20460.8/(0.00648 ) = 3157.53 kJ/mol
Answer:
Explanation:
A )
The ball floats with half of it exposed above the water level . So it must have density half that of water . In other words its density must have been 500 kg / m³
B )
Tension in the ball will be equal to net force acting on the ball
Net force on the ball = buoyant force - weight .
4/3 x π x .21³ x 10⁻⁶ x 9.8 ( 1000 - 893 )
= 40.65 x 10⁻⁶ N .
C )Tension in the 3 rd ball will be equal to net force acting on the ball
Net force on the ball = weight - buoyant force
= 4/3 x π x .21³ x 10⁻⁶ x 9.8 ( 1320 - 1000 )
= 121.6 x 10⁻⁶ N .
Answer:
(a) 19.62 N
(b) Box moves down the slope
(c) 24.43 N
Explanation:
(a)
2 Kg box causes tension
hence
where m is mass and g is gravitational force
T'=4*9.81 sin 35= 22.5071 N
Since T' is greater than
, then the box moves down the slope
(c)
Acceleration a=

When moving, the box will exert force T"=
T"= 4*9.81 sin 35 +(4*0.48)= 24.43 N