Answer:
66.98 db
Explanation:
We know that

L_T= Total signal level in db
n= number of sources
L_S= signal level from signal source.

= 66.98 db
Emily throws the ball at 30 degree below the horizontal
so here the speed is 14 m/s and hence we will find its horizontal and vertical components


vertical distance between them

now we will use kinematics in order to find the time taken by the ball to reach at Allison

here acceleration is due to gravity

now we will have

now solving above quadratic equation we have

now in order to find the horizontal distance where ball will fall is given as

here it shows that horizontal motion is uniform motion and it is not accelerated so we can use distance = speed * time

so the distance at which Allison is standing to catch the ball will be 5.33 m
Answer:
The volume of the larger cube is 5.08 g/cm³.
Explanation:
Given that,
Mass of smaller cube = 20 g
Density of smaller cube 
Dylan has two cubes of iron.
The larger cube has twice the mass of the smaller cube.

Density is same for both cubes because both cubes are same material.
The density is equal to the mass divided by the volume.


Where, V = volume
m = mass

We need to calculate the volume of smaller mass
The volume of smaller mass



Now, We need to calculate the volume of large cube



Hence, The volume of the larger cube is 5.08 g/cm³.
Answer: 6.48m/s
Explanation:
First, we know that Impulse = change in momentum
Initial velocity, u = 19.8m/s
Let,
Velocity after first collision = x m/s
Velocity after second collision = y m/s
Also, we know that
Impulse = m(v - u). But then, the question said, the guard rail delivered a "resistive" impulse. Thus, our impulse would be m(u - v).
5700 = 1500(19.8 - x)
5700 = 29700 - 1500x
1500x = 29700 - 5700
1500x = 24000
x = 24000/1500
x = 16m/s
Also, at the second guard rail. impulse = ft, so that
Impulse = 79000 * 0.12
Impulse = 9480
This makes us have
Impulse = m(x - y)
9480 = 1500(16 -y)
9480 = 24000 - 1500y
1500y = 24000 - 9480
1500y = 14520
y = 14520 / 1500
y = 9.68
Then, the velocity decreases by 3.2, so that the final velocity of the car is
9.68 - 3.2 = 6.48m/s
Answer:
The velocity of the truck after the collision is 20.93 m/s
Explanation:
It is given that,
Mass of car, m₁ = 1200 kg
Initial velocity of the car, 
Mass of truck, m₂ = 9000 kg
Initial velocity of the truck, 
After the collision, velocity of the car, 
Let
is the velocity of the truck immediately after the collision. The momentum of the system remains conversed.




So, the velocity of the truck after the collision is 20.93 m/s. Hence, this is the required solution.