answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
poizon [28]
2 years ago
11

Consider a bicycle wheel to be a ring of radius 30 cm and mass 1.5 kg. Neglect the mass of the axle and sprocket. If a force of

20 N is applied tangentially to a sprocket of radius 4 cm for 4 seconds, what linear speed does the wheel achieve, assuming it rolls without slipping?
a) 3 m/s
b) 24 m/s
c) 5.9 m/s
d) 7.1 m/s
Physics
1 answer:
Charra [1.4K]2 years ago
4 0

To solve the problem it is necessary to apply the Torque equations and their respective definitions.

The Torque is defined as,

\tau = I \alpha

Where,

I=Inertial Moment

\alpha = Angular acceleration

Also Torque with linear equation is defined as,

\tau = F*d

Where,

F = Force

d= distance

Our dates are given as,

R = 30 cm = 0.3m

m = 1.5 kg

F = 20 N

r = 4.0 cm = 0.04 m

t = 4.0s

Therefore matching two equation we have that,

d*F = I\alpha

For a wheel the moment inertia is defined as,

I= mR2, replacing we have

d*F= \frac{mR^2a}{R}

d*F= mRa

a = \frac{rF}{ mR}

a = \frac{0.04*20}{1.5*0.3}

a=1.77 m/s^2

Then the velocity of the wheel is

V = a *t \\V=1.77*4 \\V=7.11 m/s

Therefore the correct answer is D.

You might be interested in
(a) Aircraft sometimes acquire small static charges. Suppose a supersonic jet has a 0.500 - μC charge and flies due west at a sp
12345 [234]

(a) 2.64\cdot 10^{-8} N north

We can treat the aircraft as a single point charge moving in a magnetic field. In this case, the magnetic force exerted on the plane is

F=qvB sin \theta

where

q=0.500 \mu C = 0.500\cdot 10^{-6} C is the charge on the plane

v = 660 m/s is the velocity

B=8.00\cdot 10^{-5} T is the magnitude of the magnetic field

\theta=90^{\circ} is the angle between the direction of motion of the jet and of the magnetic field

Substituting,

F=(0.5\cdot 10^{-6})(660)(8.0\cdot 10^{-5})=2.64\cdot 10^{-8} N

The direction can be found by using Fleming's left hand rule. We have:

- index finger: magnetic field direction (straight up)

- middle finger: velocity of the plane (due west)

- force: thumb --> north

(b) Not negligible

As we can see from part (a), the magnitude of the force is not really big, so the effects are negligible.

For instance, we can compare this force with the weight of a plane. If we take a Boeing 737, its mass is about 80,000 kg, so its weight is

W=mg=(80000)(9.8)=784,000 N

As we can see, this is several orders of magnitude bigger than the magnetic force calculated at point (a), so the effects of the magnetic force are negligible.

8 0
2 years ago
For a sine wave depicting simple harmonic motion, the smaller the amplitude of the wave, the smaller the of the pendulum from th
stiks02 [169]
Displacement   , shorter 
7 0
2 years ago
Read 2 more answers
A particle is in uniform circular motion. Assume a standard rtz coordinate system. If you deconstruct the net force acting on th
Kitty [74]

Answer:

a) One

Explanation:

In a uniform circular motion there must be a force acting to keep it in the circular track. This force can either be centripetal or a centrifugal force.

According to the Newton's first law of motion a particle continues to be in state of rest or in uniform motion until acted upon by an external force.

Here the term uniform motion need to be understood which refers to the uniform velocity of the particle in accordance to the vector laws.

3 0
2 years ago
Karyotypes are done by matching up _____________________________ so that they are paired up. Question 11 options:
Rufina [12.5K]

Homologous Chromosomes

6 0
2 years ago
Read 2 more answers
What is the longest wavelength light capable of ionizing a hydrogen atom in the ground state?
Sindrei [870]

Answer:

9.12\cdot 10^{-8} m

Explanation:

The energy needed to ionize a hydrogen atom in the ground state is:

E=13.6 eV= 2.18\cdot 10^{-18}J

The energy of the photon is related to the wavelength by

E=\frac{hc}{\lambda}

where

h is the Planck constant

c is the speed of light

\lambda is the wavelength

Solving the formula for the wavelength, we find

\lambda=\frac{hc}{E}=\frac{(6.63\cdot 10^{-34} Js)(3\cdot 10^8 m/s)}{2.18\cdot 10^{-18}J}=9.12\cdot 10^{-8} m

7 0
2 years ago
Other questions:
  • The forward movement of orbital waves classifies them as ____ waves.
    13·1 answer
  • A conducting rod (length = 80 cm) rotates at a constant angular rate of 15 revolutions per second about a pivot at one end. A un
    10·1 answer
  • You are a member of an alpine rescue team and must get a box of supplies, with mass 2.20 kg , up an incline of constant slope an
    12·1 answer
  • One of the great dangers to mountain climbers is an avalanche, in which a large mass of snow and ice breaks loose and goes on an
    5·1 answer
  • A weightlifter lifts a 13.0-kg barbel from the ground an moves it a distance of 1.3 meters. What is the work se does on the barb
    9·1 answer
  • A resistor with resistance R and an air-gap capacitor of capacitance C are connected in series to a battery (whose strength is "
    13·1 answer
  • Which optical device can focus light to a point through reflection?
    14·1 answer
  • A swimmer standing near the edge of a lake notices a cork bobbing in the water. While watching for one minute, she notices the c
    10·1 answer
  • What is the magnitude of the momentum of a 11kg object moving at 2.2 m/s?
    11·1 answer
  • The Problems: 1. Xavier starts at a position of 0 m and moves with an average speed of 0.50 m/s for 3.0 seconds. He normally mov
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!