Answer:
A). σ = 3.823 x
/N-
B).
C/
C).
J
Explanation:
A). We know magnitude of charge per unit area for a conducting plate is given by

where, E is resultant electric field = 1.2 x
V/m
is permittivity of free space = 8.85 x
/N-
k is dielectric constant = 3.6
∴
= 3.6 x 8.85 x
x 1.2 x 
= 3.823 x
/N-
B).Now we know that the magnitude of charge per unit area on the surface of the dielectric plate is given by


C/
C).
Area of the plate, A = 2.5 
= 2.5 x 

diameter of the plate, d = 1.8 mm
= 1800 m
∴ Total energy stored in the capacitor


J
Emily throws the ball at 30 degree below the horizontal
so here the speed is 14 m/s and hence we will find its horizontal and vertical components


vertical distance between them

now we will use kinematics in order to find the time taken by the ball to reach at Allison

here acceleration is due to gravity

now we will have

now solving above quadratic equation we have

now in order to find the horizontal distance where ball will fall is given as

here it shows that horizontal motion is uniform motion and it is not accelerated so we can use distance = speed * time

so the distance at which Allison is standing to catch the ball will be 5.33 m
Answer:
The distance the piece travel in horizontally axis is
L=3.55m
Explanation:





Now the angular velocity is the blade speed so:
assuming no air friction effects affect blade piece:
time for blade piece to fall to floor

Now is the same time the piece travel horizontally

blade piece travels HORIZONTALLY = (24.5)(0.397) = 9.73 m ANS
Answer:
2.08 kg
Explanation:
Newton's second law states that the acceleration of an object is proportional to the force applied to the object, according to the equation:

where F is the force applied, m is the mass of the object and a its acceleration.
In this situation, the soccer ball is kicked with a force F=13.5 N and its acceleration is a=6.5 m/s^2, therefore its mass is

Answer:
uKkskdjod 7q and the rays are the best in all the ways ❤ ♥