answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Viefleur [7K]
2 years ago
10

An athlete leaves one end of a pool of length l at t = 0 and arrives at the other end at time t1. she swims back and arrives at

the starting position at time t2. if she is swimming initially in the positive x direction, determine her average velocities symbolically in the first half of the swim, the second half of the swim, and the round trip. (assume that time t2 is from the other end of the pool to the starting point. use any variable or symbol stated above as necessary. indicate the direction with the sign of your answer.)
Physics
1 answer:
AysviL [449]2 years ago
5 0

Average velocity is defined as

v = \frac{displacement}{time}

now we have

when she cross the pool in time t1

v = \frac{L}{t_1}

when she cross the pool back to starting position

v = - \frac{L}{t_2}

Here negative sign is for its return path direction which is reversed of its initial direction.

now for the round trip

displacement = 0

so v = 0

You might be interested in
Ever tried to stop a 150-pound (68 kg) cannonball fired towards you at 30 mph (48 km/hr.)? No, probably not. But you may have tr
alex41 [277]
The two situations are similar because in both you are trying to minimize the damage and make the best out of a bad situation
8 0
2 years ago
A bobsled is pushed with a force of 190.08 N. The sled has a mass of 28 kg. What is the acceleration of the bobsled? Report to t
Usimov [2.4K]
By definition it is known that force equals mass by acceleration. In other words F = m * a. To find the acceleration, you must clear the formula mentioned. Therefore, for a force of 190.08N and a mass of 28 Kg, we have that the acceleration is a = F / m = (190.08) / (28) = 6.79 m / s ^ 2
6 0
2 years ago
Which of the following most accurately represents John Dalton’s model of the atom? A. a tiny, solid sphere with an unpredictable
aleksley [76]
A and c are the answersss
6 0
2 years ago
Evaporation of sweat requires energy and thus take excess heat away from the body. Some of the water that you drink may eventual
kotegsom [21]

Answer:

The amount of heat required is H_t =  1.37 *10^{6} \ J

Explanation:

From the question we are told that

The mass of water is m_w  =  20 \ ounce = 20 * 28.3495 = 5.7 *10^2 g

The temperature of the water before drinking is T_w  =  3.8 ^oC

The temperature of the body is T_b  =  36.6^oC

Generally the amount of heat required to move the water from its former temperature to the body temperature is

H=  m_w  *  c_w * \Delta T

Here c_w is the specific heat of water with value c_w = 4.18 J/g^oC

So

H=   5.7 *10^2 * 4.18 * (36.6 - 3.8)

=> H= 7.8 *10^{4} \  J

Generally the no of mole of sweat present mass of water is

n = \frac{m_w}{Z_s}

Here Z_w is the molar mass of sweat with value

Z_w =  18.015 g/mol

=> n = \frac{5.7 *10^2}{18.015}

=> n = 31.6 \  moles

Generally the heat required to vaporize the number of moles of the sweat is mathematically represented as

H_v  =  n  *  L_v

Here L_v is the latent heat of vaporization with value L_v  = 7 *10^{3} J/mol

=> H_v  =  31.6 * 7 *10^{3}

=> H_v  = 1.29 *10^{6} \  J

Generally the overall amount of heat energy required is

H_t =  H +  H_v

=> H_t =  7.8 *10^{4} +  1.29 *10^{6}

=> H_t =  1.37 *10^{6} \ J

4 0
2 years ago
The filament in the bulb is moving back and forth, first pushed one way and then the other. What does this imply about the curre
Anestetic [448]

Answer:

energy carried by the current is given by the pointyng vector

Explanation:

The current is defined by

       i = dQ / dt

this is the number of charges per unit area over time.

The movement of the charge carriers (electrons) is governed by the applied potential difference, when the filament has a movement the drag speed of these moving electrons should change slightly.

But the energy carried by the current is given by the pointyng vector of the electromagnetic wave

            S = 1 / μ₀ EX B

It moves at the speed of light and its speed depends on the properties of the doctor and is not disturbed by small changes in speed, therefore the current in the circuit does not change due to this movement

5 0
2 years ago
Other questions:
  • This version of Einstein’s equation is often used directly to find what value?
    14·2 answers
  • Samantha wants her friend to wear a bicycle helmet when they go cycling. She wants to explain how a bicycle is designed to provi
    10·2 answers
  • Pwcs are very responsive to slight turns of the steering control. as a result, what dangerous situation can occur when a quick t
    12·1 answer
  • A flat rectangular loop of wire carrying a 4.0-a current is placed in a uniform 0.60-t magnetic field. the magnitude of the torq
    13·1 answer
  • A race car driver must average 200km/hr for four laps to qualify for a race. Because of engine trouble, the car averages only 17
    11·1 answer
  • When two resistors are wired in series with a 12 V battery, the current through the battery is 0.33 A. When they are wired in pa
    5·1 answer
  • Two rockets are flying in the same direction and are side by side at the instant their retrorockets fire. Rocket A has an initia
    8·1 answer
  • A steel plate shine but wooden vessel desnt
    15·3 answers
  • A baseball is moving at a speed of 2.2\,\dfrac{\text{m}}{\text{s}}2.2 s m ​ 2, point, 2, space, start fraction, m, divided by, s
    9·1 answer
  • The submarine sends out a sound wave that returns in 1.08 seconds. If this sound wave has a frequency of 2.50 × 106 Hz and a wav
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!