156.8 Joules of energy is in the box's gravitational potential energy store
<u>Explanation</u>:
<em>Given:</em>
Mass of the box Dane is holding = 8 Kilograms
Height at which Dane is holding the box above the ground= 2 metres
<em>To Find:</em>
Gravitational potential energy in the box=?
<em>Solution:</em>
gravitational potential energy is the work done per mass on a object to move that object from one fixed location to to another location against gravity.Its unit is joules or J
Thus Gravitational potential energy is represented as,

where
is the gravitational potential energy
m is the mass
h is the height
g is the gravitational force( 9.8
)
Now substituting the given values,


Answer:
the ratio is 
Explanation:
Given

The RMS velocity of molecules in a gas is given by

where T=temperature

For T = 387K

For T = 774

dividing eqn 1 and eqn 2


Thus,the ratio is 
Answer:
ma= ma
m⋅a = m⋅a
And equivalently:
am=ma
a⋅m = m⋅a
Explanation:
Question
Assuming this question "Similar to what you see in your textbook, you can generally omit the multiplication symbol as you answer questions online, except when the symbol is needed to make your meaning clear. For example, 1*10^5 is not the same as 110^5 . When you need to be explicit, type * (Shift + 8) to insert the multiplication operator. You will see a multiplication dot (⋅) appear in the answer box. Do not use the symbol x. For example, for the expression ma,
typing m⋅a would be correct, but mxa would be incorrect".
Solution to the problem
For this case we want to write a expression for ma, and based on the previous info we can write:
ma= ma
m⋅a = m⋅a
And equivalently:
am=ma
a⋅m = m⋅a
But is not correct do this:
mxa=mxa
axm = mxa
Answer:
The Role of Heat Transfer Methods in the Distribution of Earth's Energy
Explanation:
Answer:
<u><em>Rate of dissolving compounds:</em></u>
If we increase the temperature of the solution, then the dissolving compound would dissolve more easily.
<u><em>Boiling Point of Compounds:</em></u>
If the inter-molecular forces of any compound is really strong, then the boiling point of the compound would be really high.