Answer:
1. 579 x 10 ^-22N
Explanation:
F = kq1q2/r^2
= 9.0 x 10^9 x 5.67 x 10^-18 x 3.79 x 10^-18/ (3.5 x 10^-2)^2
= 1. 579 x 10 ^-22N
(u) = 20 m/s
(v) = 0 m/s
<span> (t) = 4 s
</span>
<span>0 = 20 + a(4)
</span><span>4 x a = -20
</span>
so, the answer is <span>-5 m/s^2. or -5 meter per second</span>
Below are the choices that can be found in the other sources:
A. diffraction
<span>B. refraction </span>
<span>C. reflection </span>
<span>D. transmission
</span>
The answer is diffraction. It means that <span>the process by which a beam of light or other system of waves is spread out as a result of passing through a narrow aperture or across an edge, typically accompanied by interference between the wave forms produced.</span>
Answer:
6.18 m/s
Explanation:
Roller skate collision
The final direction of the system (me=M + person=P) velocity vector is at an angle; Ф, to the direction running south to north. Apply the component form of the impulse-momentum equation, firstly;
x-axis component form (+x east);
+
+
=
+
Ф
60 ·8 + 0 = (60 + 80)
Ф
480 = 140
Ф................. (I)
y-axis component form (+y north);
+
+
=
+ 
Ф
0 + 80.9 = (60 + 80)
Ф
720=
140
Ф
140Vf=
Ф......................................(2)
Substituting (2) into (1) to give the angle;
480 = 720tan Ф
Ф = arctan(0.67) =33.69°.......................(3)
Evaluating (1) with (3) gives the velocity magnitude
480 = 140Vfsin 33.69°
Vf=6.18 m/s
note 1:
This angle corresponds to a direction; 90° - 33.69° = 56.31° north of east.
Answer:
Explanation:
Since the front and back of the rocket simultaneously line up with forward and backward end of the platform respectively .
Then length of the platform = length of the train rocket .
A )
Time to cross a particular point on the platform
= length of rocket train / .96 x 3 x 10⁸
= 90 / .96 x 3 x 10⁸
= 31.25 x 10⁻⁸ s
B) Rest length of the rocket = length of platform = 90 m
C ) length of platform as viewed by moving observer =

= 
= 321 m
D ) For the observer on platform time taken = 31.25 x 10⁻⁸ s
for the observer in the rocket , time will be dilated so time recorded by observer in motion ,
8.75 x 10⁻⁸ s .