answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet [91]
2 years ago
6

A charge of 5.67 x 10-18 C is placed 3.5 x 10 m away from another charge of - 3.79 x 10 "C

Physics
1 answer:
miskamm [114]2 years ago
6 0

Answer:

1. 579 x 10 ^-22N

Explanation:

F = kq1q2/r^2

   = 9.0 x 10^9 x 5.67 x 10^-18 x 3.79 x 10^-18/ (3.5 x 10^-2)^2

    = 1. 579 x 10 ^-22N

You might be interested in
You are installing a new spark plug in your car, and the manual specifies that it be tightened to a torque that has a magnitude
klemol [59]
We are given 

the torque requirement of 97 Newton meter. 

The formula of the torque is

τ = r * F * sinθ

where 

τ is the torque
r = radius from the axis of rotation to the point of application. 
F = force exerted 
θ = the angle between the lever arm and the radius

Try to substitute the given and solve for F. 
5 0
1 year ago
A rotating beacon is located 2 miles out in the water. Let A be the point on the shore that is closest to the beacon. As the bea
Mice21 [21]

Answer:

v = 3369.2 m/s

Explanation:

As we know that Beacon is rotating with angular speed

f = 10 rev/min

so we have

\omega = 2\pi f

\omega = 2\pi(\frac{10}{60})

\omega = 1.047 rad/s

now we know that

v = r \omega

here we will have

r = 2 miles = 2(1609 m)

r = 3218 m

so we have

v = 3218(1.047)

v = 3369.2 m/s

6 0
2 years ago
A p-type Si sample is used in the Haynes-Shockley experiment. The length of the sample is 2 cm, and two probes are separated by
Airida [17]

Answer:

Mobility of the minority carriers, \mu_{n} =1184.21 cm^{2} /V-sec

Diffusion coefficient for minority carriers,D_{n} = 29.20 cm^2 /s

Verified from Einstein relation as  \frac{D_{n} }{\mu_{n} }  = 25 mV

Explanation:

Length of sample, l_{s} = 2 cm

Separation between the two probes, L = 1.8 cm

Drift time, t_{d} = 0.608 ms

Applied voltage, V = 5 V

Mobility of the minority carriers ( electrons), \mu_{n} = \frac{V_{d} }{E}

Where the drift velocity, V_{d} = \frac{L}{t_{d} }

V_{d} = \frac{1.8}{0.608 * 10^{-3} } \\V_{d} = 2960.53 cm/s

and the Electric field strength, E = \frac{V}{l_{s} }

E = 5/2

E = 2.5 V/cm

Mobility of the minority carriers:

\mu_{n} = 2960.53/2.5\\\mu_{n} =1184.21 cm^{2} /V-sec

The electron diffusion coefficient, D_{n} = \frac{(\triangle x)^{2} }{16 t_{d} }

\triangle x = (\triangle t )V_{d}, where Δt = separation of pulse seen in an oscilloscope in time( it should be in micro second range)

\triangle x = \frac{(\triangle t) L}{t_{d} } \\\triangle x = \frac{180*10^{-6} * 1.8}{0.608*10^{-3}  }\\\triangle x =0.533 cm

D_{n} = \frac{0.533^{2} }{16 * 0.608 * 10^{-3} }\\D_{n} = 29.20 cm^2 /s

For the Einstein equation to be satisfied, \frac{D_{n} }{\mu_{n} } = \frac{KT}{q} = 0.025 V

\frac{D_{n} }{\mu_{n} } = \frac{29.20}{1184.21} \\\frac{D_{n} }{\mu_{n} } = 0.025 = 25 mV

Verified.

4 0
2 years ago
You place your hands over a steaming bowl of soup to warm them. Which type of heat transfer are you experiencing?
Pani-rosa [81]

There could be a little bit of conduction through the air that's between the soup and your hand.  But it's very small, because air is not a good conductor of heat.

It's mostly <em>convection</em> ... hot air and steam rising from the soup to your hand.

Then, of course, there HAS to be some conduction when the hot gases reach your hand ... their heat has to soak into your skin, and that's conduction.

8 0
2 years ago
Read 2 more answers
A 5.00-kg ball is hanging from a long but very light flexible wire when it is struck by a 1.50-kg stone traveling horizontally t
devlian [24]

consider the right direction as positive and left direction as negative.

M = mass of the ball = 5 kg

m = mass of stone = 1.50 kg

V_{bi} = initial velocity of the ball before collision = 0 m/s

V_{si} = initial velocity of the stone before collision = 12 m/s

V_{bf} = final velocity of the ball after collision = ?

V_{sf} = final velocity of the stone after collision = - 8.50 m/s

using conservation of momentum

MV_{bi} + mV_{si} = MV_{bf} + mV_{sf}

(5) (0) + (1.5) (12) = 5 V_{bf} + (1.50) (- 8.50)

V_{bf} = 6.15 m/s

h = height gained by the ball

using conservation of energy

Potential energy gained by ball at Top = kinetic energy at the bottom

Mgh = (0.5) MV_{bf}^{2}

(9.8) h = (0.5) (6.15)²

h = 1.93 m

8 0
2 years ago
Read 2 more answers
Other questions:
  • What is the kinetic energy of a 2000 kilogram boat moving at 5m/sec?
    12·1 answer
  • A band director instructs students to play a pitch louder. How will the sound wave change when the band plays the same pitch lou
    8·2 answers
  • A stable air mass is most likely to have which characteristic? 1. turbulent air 2. poor surface visibility 3. showery precipitat
    15·1 answer
  • A uniform meterstick of mass 0.20 kg is pivoted at the 40 cm mark. where should one hang a mass of 0.50 kg to balance the stick?
    13·1 answer
  • The suns energy is classified by the
    15·2 answers
  • A jogger accelerates from rest to 3.0 m/s in 2.0 s. A car accelerates from 38.0 to 41.0 m/s also in 2.0 s. (a) Find the accelera
    12·1 answer
  • A nonuniform, horizontal bar of mass m is supported by two massless wires against gravity. The left wire makes an angle ϕ1 with
    13·1 answer
  • Two soccer players, Mia and Alice, are running as Alice passes the ball to Mia. Mia is running due north with a speed of 6.00 m/
    10·1 answer
  • A 3.50-meter length of wire with a cross-sectional area of 3.14 × 10-6 meter2 is at 20° Celsius. If the wire has a resistance of
    11·1 answer
  • Calculate the mass (in kg) of 54.3 m³ of granite. The density of granite is 2700 kg/m³. Give your answer to 2 decimal places.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!