answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sweet [91]
1 year ago
6

A charge of 5.67 x 10-18 C is placed 3.5 x 10 m away from another charge of - 3.79 x 10 "C

Physics
1 answer:
miskamm [114]1 year ago
6 0

Answer:

1. 579 x 10 ^-22N

Explanation:

F = kq1q2/r^2

   = 9.0 x 10^9 x 5.67 x 10^-18 x 3.79 x 10^-18/ (3.5 x 10^-2)^2

    = 1. 579 x 10 ^-22N

You might be interested in
An ideal monatomic gas initially has a temperature of T and a pressure of p. It is to expand from volume V1 to volume V2. If the
yawa3891 [41]

Answer:

Isothermal :   P2 = ( P1V1 / V2 ) ,  work-done pdv = nRT * In( \frac{V2}{v1} )

Adiabatic : : P2 = \frac{P1V1^{\frac{5}{3} } }{V2^{\frac{5}{3} } }  , work-done =

W = (3/2)nR(T1V1^(2/3)/(V2^(2/3)) - T1)

Explanation:

initial temperature : T

Pressure : P

initial volume : V1

Final volume : V2

A) If expansion was isothermal calculate final pressure and work-done

we use the gas laws

= PIVI = P2V2

Hence : P2 = ( P1V1 / V2 )

work-done :

pdv = nRT * In( \frac{V2}{v1} )

B) If the expansion was Adiabatic show the Final pressure and work-done

final pressure

P1V1^y = P2V2^y

where y = 5/3

hence : P2 = \frac{P1V1^{\frac{5}{3} } }{V2^{\frac{5}{3} } }

Work-done

W = (3/2)nR(T1V1^(2/3)/(V2^(2/3)) - T1)

Where    T2 = T1V1^(2/3)/V2^(2/3)

3 0
1 year ago
A Wooden block has a mass of 0.200kg, a specific heat of 710 J (kg times degrees Celsius and is at a temperature of 20.0 degrees
olchik [2.2K]

Answer:

35°C

Explanation:

q = mCΔT

2130 J = (0.200 kg) (710 J/kg/°C) (T − 20.0°C)

T = 35°C

8 0
1 year ago
A shift in one fringe in the Michelson-Morley experiment corresponds to a change in the round-trip travel time along one arm of
olya-2409 [2.1K]

Explanation:

When Michelson-Morley apparatus is turned through 90^{o} then position of two mirrors will be changed. The resultant path difference will be as follows.

      \frac{lv^{2}}{\lambda c^{2}} - (-\frac{lv^{2}}{\lambda c^{2}}) = \frac{2lv^{2}}{\lambda c^{2}}

Formula for change in fringe shift is as follows.

          n = \frac{2lv^{2}}{\lambda c^{2}}

       v^{2} = \frac{n \lambda c^{2}}{2l}

             v = \sqrt{\frac{n \lambda c^{2}}{2l}}

According to the given data change in fringe is n = 1. The data is Michelson and Morley experiment is as follows.

             l = 11 m

    \lambda = 5.9 \times 10^{-7} m

           c = 3.0 \times 10^{8} m/s

Hence, putting the given values into the above formula as follows.

            v = \sqrt{\frac{n \lambda c^{2}}{2l}}

               = \sqrt{\frac{1 \times (5.9 \times 10^{-7} m) \times (3.0 \times 10^{8})^{2}}{2 \times 11 m}}

               = 2.41363 \times 10^{9} m/s

Thus, we can conclude that velocity deduced is 2.41363 \times 10^{9} m/s.

3 0
1 year ago
A system contains a perfectly elastic spring, with an unstretched length of 20 cm and a spring constant of 4 N/cm.
mote1985 [20]

Answer:

a) When its length is 23 cm, the elastic potential energy of the spring is

0.18 J

b) When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J

Explanation:

Hi there!

a) The elastic potential energy (EPE) is calculated using the following equation:

EPE = 1/2 · k · x²

Where:

k = spring constant.

x = stretched lenght.

Let´s calculate the elastic potential energy of the spring when it is stretched 3 cm (0.03 m).

First, let´s convert the spring constant units into N/m:

4 N/cm · 100 cm/m = 400 N/m

EPE = 1/2 · 400 N/m · (0.03 m)²

EPE = 0.18 J

When its length is 23 cm, the elastic potential energy of the spring is 0.18 J

b) Now let´s calculate the elastic potential energy when the spring is stretched 0.06 m:

EPE = 1/2 · 400 N/m · (0.06 m)²

EPE = 0.72 J

When the stretched length doubles, the potential energy increases by a factor of four to 0.72 J

7 0
2 years ago
The distance of the earth from the sun is 93 000 000 miles. if there are 3.15 × 107 s in one year, find the speed of the earth i
faltersainse [42]

The angular velocity of the orbit about the sun is:

w = 1 rev / year = 1 rev / 3.15 × 10^7 s

 

Now in 1 rev there is 360° or 2π rad, therefore:

w = 2π rad / 3.15 × 10^7 s

 

To convert in linear velocity, multiply the rad /s by the radius:

v = (2π rad / 3.15 × 10^7 s) * 93,000,000 miles

<span>v = 18.55 miles / s = 29.85 km / s</span>

5 0
2 years ago
Read 2 more answers
Other questions:
  • A box weighing 46 newtons rests on an incline that makes an angle of 25° with the horizontal. What is the magnitude of the compo
    5·1 answer
  • According to Newton’s law of universal gravitation, which statements are true?
    10·2 answers
  • The gravitational force between Pluto and Charon is 3.61 × 1018 N. Pluto has a mass of 1.3 × 1022 kg, which is only slightly gre
    5·2 answers
  • The howler monkey is the loudest land animal and, under some circumstances, can be heard up to a distance of 8.9 km. Assume the
    12·1 answer
  • A 0.25 kg ideal harmonic oscillator has a total mechanical energy of 9.8 J. If the oscillation amplitude is 20.0 cm, what is the
    12·1 answer
  • Consider two slides, both of the same height. One is long and the other is short. From which slide will a child have a greater f
    12·1 answer
  • A spherical drop of water carrying a charge of 30 pC has a potential of 500 V at its surface (with V 0 at infinity). (a) What is
    10·1 answer
  • In a simple circuit a 6-volt dry cell pushes charge through a single lamp which has a resistance of 3 Ω. According to Ohms law t
    14·1 answer
  • An imaginary cubical surface of side L has its edges parallel to the x-, y- and z-axes, one corner at the point x = 0, y = 0, z
    9·1 answer
  • If a cliff jumper leaps off the edge of a 100m cliff, how long does she fall before hitting the water? (assume zero air resistan
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!