answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Umnica [9.8K]
2 years ago
5

A p-type Si sample is used in the Haynes-Shockley experiment. The length of the sample is 2 cm, and two probes are separated by

1.8 cm. Voltage applied at the two ends is 5 V. A pulse arrives at the collection point at 0.608 ms, and the separation of the pulse is 180 sec. Calculate mobility and diffusion coefficient for minority carriers. Verify it from the Einstein relation.
Physics
1 answer:
Airida [17]2 years ago
4 0

Answer:

Mobility of the minority carriers, \mu_{n} =1184.21 cm^{2} /V-sec

Diffusion coefficient for minority carriers,D_{n} = 29.20 cm^2 /s

Verified from Einstein relation as  \frac{D_{n} }{\mu_{n} }  = 25 mV

Explanation:

Length of sample, l_{s} = 2 cm

Separation between the two probes, L = 1.8 cm

Drift time, t_{d} = 0.608 ms

Applied voltage, V = 5 V

Mobility of the minority carriers ( electrons), \mu_{n} = \frac{V_{d} }{E}

Where the drift velocity, V_{d} = \frac{L}{t_{d} }

V_{d} = \frac{1.8}{0.608 * 10^{-3} } \\V_{d} = 2960.53 cm/s

and the Electric field strength, E = \frac{V}{l_{s} }

E = 5/2

E = 2.5 V/cm

Mobility of the minority carriers:

\mu_{n} = 2960.53/2.5\\\mu_{n} =1184.21 cm^{2} /V-sec

The electron diffusion coefficient, D_{n} = \frac{(\triangle x)^{2} }{16 t_{d} }

\triangle x = (\triangle t )V_{d}, where Δt = separation of pulse seen in an oscilloscope in time( it should be in micro second range)

\triangle x = \frac{(\triangle t) L}{t_{d} } \\\triangle x = \frac{180*10^{-6} * 1.8}{0.608*10^{-3}  }\\\triangle x =0.533 cm

D_{n} = \frac{0.533^{2} }{16 * 0.608 * 10^{-3} }\\D_{n} = 29.20 cm^2 /s

For the Einstein equation to be satisfied, \frac{D_{n} }{\mu_{n} } = \frac{KT}{q} = 0.025 V

\frac{D_{n} }{\mu_{n} } = \frac{29.20}{1184.21} \\\frac{D_{n} }{\mu_{n} } = 0.025 = 25 mV

Verified.

You might be interested in
(Double points) A machine receives electricity that enables it to deliver a total of 8,542 N of force for the completion of its
storchak [24]

Answer: machine's efficiency = 82.2%

Explanation:

Efficiency of a machine is the capability of a machine to convert input to output without waste.

It can be expressed as

Efficiency = output/ input × 100%

Output = 7,023N

Imput = 8,542N

Efficiency = 7,023N/8,542N × 100%

Efficiency = 82.2%

4 0
1 year ago
The Gaia hypothesis is an example of _____
Fofino [41]
A complex entity involving the Earth's biosphere, atmosphere, oceans, and soil; the totality constituting a feedback or cybernetic system which seeks an optimal physical and chemical environment for life on this planet
4 0
1 year ago
If it were possible to remove gravity and friction, think about what would happen to a football if it were tossed into the air.
elena-14-01-66 [18.8K]
Ignoring fluid resistance, football will <span>maintain a constant speed until other forces accelerate the football.</span>
6 0
2 years ago
Read 2 more answers
If the gas in a container absorbs 275 Joules of heat, has 125 Joules of work done on it, then does 50 Joules of work, what is th
cluponka [151]

Answer:

    The increase in the internal energy = 350 J

Explanation:

Given that

Q= 275  J

W= - 125 J

W' = 50 J

W(net)= -125  + 50 = -75 J

Sign -

1.Heat rejected by system - negative

2.Heat gain by system - Positive

3.Work done by system = Positive

4.Work done on the system-Negative

Lets take change in the  internal energy =ΔU

We know that

Q= ΔU + W(net)

275 = ΔU -75

ΔU= 275 + 75 J

ΔU=350 J

The increase in the internal energy = 350 J

7 0
2 years ago
A pair of slits, separated by 0.150 mm, is illuminated by light having a wavelength of λ = 643 nm. An interference pattern is ob
kumpel [21]

Answer:

0.006 m

Explanation:

d = separation between the slits = 0.150 mm = 0.150 x 10⁻³ m

λ = wavelength of the light = 643 nm = 643 x 10⁻⁹ m

D = distance of the screen where interference pattern is observed = 140 cm = 1.40 m

δ = Path difference

Path difference is given as

δ = Dλ/d

δ = (1.40) (643 x 10⁻⁹)/(0.150 x 10⁻³)

δ = 0.006 m

3 0
2 years ago
Other questions:
  • The buoyant force on an object fully submerged in a liquid depends on (select all that apply)
    13·1 answer
  • Write a hypothesis for Part II of the lab, which is about the relationship described by F = ma. In the lab, you will use a toy c
    10·2 answers
  • You are moving at a speed 2/3 c toward randy when randy shines a light toward you. at what speed do you see the light approachin
    12·1 answer
  • A girl is running toward the front of a train at 10 m/s. If the train is going 75 m/s on the Southbound tracks, what is the spee
    6·2 answers
  • If a rock is thrown upward on the planet mars with a velocity of 14 m/s, its height (in meters) after t seconds is given by h =
    8·1 answer
  • A puck moves 2.35 m/s in a -22° direction. A hockey stick pushes it for 0.215 s, changing its velocity to 6.42 m/s in a 50.0° di
    14·1 answer
  • Consider a double-slit with a distance between the slits of 0.04 mm and slit width of 0.01 mm. Suppose the screen is a distance
    7·1 answer
  • n Section 12.3 it was mentioned that temperatures are often measured with electrical resistance thermometers made of platinum wi
    14·1 answer
  • A light wave has a 670 nm wavelength in air. Its wavelength in a transparent solid is 420 nm.
    5·1 answer
  • Two spheres of mass M and 2M float in space in the absence of external gravitational forces, as shown in the figure. Which of th
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!