Answer:
34.17°C
Explanation:
Given:
mass of metal block = 125 g
initial temperature
= 93.2°C
We know
..................(1)
Q= Quantity of heat
m = mass of the substance
c = specific heat capacity
c = 4.19 for H₂O in 
= change in temperature
Now
The heat lost by metal = The heat gained by the metal
Heat lost by metal = 
Heat gained by the water = 
thus, we have
= 

⇒ 
Therefore, the final temperature will be = 34.17°C
KE=1/2mv^2 - equation for kinetic energy
KE=(1/2)(0.12 kg)((7.8 m/s)^2 - plug it into the formula
KE=(0.06 kg)(60.84 m/s) - multiply 1/2 to the mass and square the speed
KE= 3.7 J - answer
Hope this helps
Answer:
2n t = m λ₀
, R = 0.240 mm
Explanation:
The interference by regency in thin films uses two rays mainly the one reflected on the surface and the one reflected on the inside of the film.
The ray that is reflected in the upper part of the film has a phase change of 180º since the ray stops from a medium with a low refractive index to one with a higher regrading index,
-This phase change is the introduction of a λ/2 change
-The ray passing through the film has a change in wavelength due to the refractive index of the medium
λ₀ = λ / n
Therefore Taking into account this fact the destructive interference expression introduces an integer phase change, then the extra distance 2t is
2 t = (m’+ ½ + ½) λ₀ / n
2t = (m’+1) λ₀ / n
m = m’+ 1
2n t = m λ₀
With m = 0, 1, 2, ...
Where t is the thickness of the film, n the refractive index of the medium, λ the wavelength
The thickness of a hair is the thickness of the film t
2R = t
R = t / 2
R = 0480/2
R = 0.240 mm
Answer: 80m
Explanation:
Distance of balloon to the ground is 3150m
Let the distance of Menin's pocket to the ground be x
Let the distance between Menin's pocket to the balloon be y
Hence, x=3150-y------1
Using the equation of motion,
V^2= U^s + 2gs--------2
U= initial speed is 0m/s
g is replaced with a since the acceleration is under gravity (g) and not straight line (a), hence g is taken as 10m/s
40m/s is contant since U (the coin is at rest is 0) hence V =40m/s
Slotting our values into equation 2
40^2= 0^2 + 2 * 10* (3150-y)
1600 = 0 + 63000 - 20y
1600 - 63000 = - 20y
-61400 = - 20y minus cancel out minus on both sides of the equation
61400 = 20y
Hence y = 61400/20
3070m
Hence, recall equation 1
x = 3150 - 3070
80m
I hope this solve the problem.