answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Katena32 [7]
2 years ago
11

A person weighing 0.70 kn rides in an elevator that has an upward acceleration of 1.5 m/s2. what is the magnitude of the normal

force of the elevator's floor on the person?
Physics
1 answer:
creativ13 [48]2 years ago
8 0
First of all, we can find the mass of the person, since we know his weight W:
W=mg=0.70 kN=700 N
And so
m= \frac{W}{g}= \frac{700 N}{9.81 m/s^2}=71.4 kg

We know for Newton's second law that the resultant of the forces acting on the person must be equal to the product between the mass and the acceleration a of the person itself:
\sum F =  ma
There are only two forces acting on the person: his weight W (downward) and the vincular reaction Rv of the floor against the body (upward). So we can rewrite the previous equation as
R_v -W = ma
We know the acceleration of the system, a=1.5 m/s^2 (upward, so with same sign of Rv), so we can solve to find the value of Rv, the normal force exerted by the elevator's floor on the person:
R_v = ma+W=(71.4 kg)(1.5 m/s^2)+700 N =807N
You might be interested in
The seismic activity density of a region is the ratio of the number of earthquakes during a given time span to the land area aff
Natalija [7]

Answer:

0.0059

Explanation:

According to the question the seismic activity density is given by

\text{Seismic activity density}=\frac{\text{Number of Earthquakes over a given time span}}{\text{The land area affected}}

Here,

Number of Earthquakes over a given time span = 424

The land area affected = 71300 mi²

So,

\text{Seismic activity density}=\frac{424}{71300}\\\Rightarrow \text{Seismic activity density}=0.0059

The seismic activity density is 0.0059

8 0
1 year ago
Read 2 more answers
A brick of mass 2 kg is dropped from a rest position 5 m above the ground. what is its velocity at a height of 3 m above the gro
Rina8888 [55]
We can solve the problem by using the law of conservation of energy.

Using the ground as reference point, the mechanical energy of the brick when it is at 5 m from the ground is just potential energy (because the brick is initially at rest, so it doesn't have kinetic energy):
E= U = mgh=(2 kg)((9.81 m/s^2)(5 m)=98.1 J

when the brick is at h'=3 m from the ground, its mechanical energy is now sum of kinetic energy and potential energy:
E= K+U= \frac{1}{2} mv^2 + mgh'

where v is the velocity of the brick. Since E is conserved, it must be equal to the initial energy (98.1 J), so we can solve this equation to find v:
v= \sqrt{ \frac{2(E-mgh')}{m} }=6.3 m/s
8 0
2 years ago
Un tren emplea cierto tiempo en recorrer 240 km. Si la velocidad hubiera sido 20 km por hora mas que la que llevaba hubiera tard
podryga [215]

Answer:

A train takes some time to travel 240 km. If the speed had been 20 km per hour more than the one it was carrying, it would have taken 2 hours less to travel this distance. In what time did he cover the 240 km

Explanation:

Given that,

A train travelled a distance of 240km

Let the initial speed be

S_1 = x km/hr

Let assume the time spent on the first journey is

t_1 = a

Now if he increase the speed to

S_2 = (x + 20) km/hr

Then, he would have take 2hrs less time

Then, time t_2 = a - 2

The common data fore the two journey is the distance

Speed = distance / time

For the first stage

S_1 = d / t_1

d = S_1 × a

d = x × a

240 = x•a

x = 240 / a Equation 1

For stage two

d = S_2 × t_2

d = (x+20) × (a - 2)

240 = (x+20) × (a - 2). Equation 2

Substitute equation 1 into 2

240 = (240/a + 20) × (a -2)

240 = 240 - 480/a + 20a - 40

240 - 240 + 40 = - 480/a + 20a

240 - 240 + 40 = (-480 + 20a²) / a

40 = (-480 + 20a²) / a

40a = -480 + 20a²

20a² - 40a -480 = 0

Divided through by 20

a² - 2a - 24 = 0

a² + 4a - 6a - 24 = 0

a(a+4) -6(a+4) = 0

(a-6)(a+4) = 0

(a-6) = 0 or (a+4) = 0

So, a = 6 or a = -4

The time cannot be negative, then, the time is a = 6hours

So, t_1 = a = 6hours,

So, the time used in the first journey is 6hours

So, in the second journey the time use is 2hours less than the first journey

Then, t_2 = 6 - 2 = 4 hours

t_1 = 6 hours

t_2 = 4 hours

Spanish

Un tren recorrió una distancia de 240 km.

Deje que la velocidad inicial sea

S_1 = x km / h

Supongamos que el tiempo dedicado al primer viaje es

t_1 = a

Ahora si aumenta la velocidad a

S_2 = (x + 20) km / h

Entonces, habría tomado 2 horas menos de tiempo

Entonces, el tiempo t_2 = a - 2

Los datos comunes para los dos viajes son la distancia.

Velocidad = distancia / tiempo

Para la primera etapa

S_1 = d / t_1

d = S_1 × a

d = x × a

240 = x • a

x = 240 / a Ecuación 1

Para la etapa dos

d = S_2 × t_2

d = (x + 20) × (a - 2)

240 = (x + 20) × (a - 2). Ecuación 2

Sustituye la ecuación 1 en 2

240 = (240 / a + 20) × (a -2)

240 = 240 - 480 / a + 20a - 40

240 - 240 + 40 = - 480 / a + 20a

240 - 240 + 40 = (-480 + 20a²) / a

40 = (-480 + 20a²) / a

40a = -480 + 20a²

20a² - 40a -480 = 0

Dividido entre 20

a² - 2a - 24 = 0

a² + 4a - 6a - 24 = 0

a (a + 4) -6 (a + 4) = 0

(a-6) (a + 4) = 0

(a-6) = 0 o (a + 4) = 0

Entonces, a = 6 o a = -4

El tiempo no puede ser negativo, entonces, el tiempo es a = 6 horas

Entonces, t_1 = a = 6 horas,

Entonces, el tiempo utilizado en el primer viaje es de 6 horas

Entonces, en el segundo viaje, el uso del tiempo es 2 horas menos que el primer viaje

Entonces, t_2 = 6 - 2 = 4 horas

t_1 = 6 horas

t_2 = 4 horas

5 0
2 years ago
A 50-kg person stands 1.5 m away from one end of a uniform 6.0-m-long scaffold of mass 70.0 kg.
babymother [125]

Answer

given,

mass of the person, m = 50 Kg

length of scaffold = 6 m

mass of scaffold, M= 70 Kg

distance of person standing from one end = 1.5 m

Tension in the vertical rope = ?

now equating all the vertical forces acting in the system.

T₁ + T₂ = m g + M g

T₁ + T₂ = 50 x 9.8  + 70 x 9.8

T₁ + T₂ = 1176...........(1)

system is equilibrium so, the moment along the system will also be zero.

taking moment about rope with tension T₂.

now,

T₁ x 6 - mg x (6-1.5) - M g x 3 = 0

'3 m' is used because the weight of the scaffold pass through center of gravity.

6 T₁ = 50 x 9.8 x 4.5 + 70 x 9.8 x 3

6 T₁ = 4263

    T₁ = 710.5 N

from equation (1)

T₂ = 1176 - 710.5

 T₂ = 465.5 N

hence, T₁ = 710.5 N and T₂ = 465.5 N

4 0
2 years ago
A projectile is launched horizontally east at a speed of 29.4 M/s towards a wall 88.2 m away. What is the velocity of the projec
Drupady [299]

Time before projectile hits wall

= 88.2 m / 29.4 m/s = 3 seconds

Vertical velocity of projectile after three seconds

= 3*9.8 = 29.4 m/s

Horizontal velocity of projectile after three seconds, assuming no air resistance

= 29.4 m/s  (given)

Conclusion:

velocity of projectile when it hits the wall

= < 29.4, -29.4> m/s

= sqrt(29.4^2+29.4^2) m/s east-bound at 45 degrees below horizontal

= 41.58 m/s east-bound at 45 degrees below horizontal.

6 0
2 years ago
Other questions:
  • A highway patrolman traveling at the speed limit is passed by a car going 20 mph faster than the speed limit. After one minute,
    13·2 answers
  • An air-filled 20-μf capacitor has a charge of 60 μc on its plates. how much energy is stored in this capacitor?
    8·1 answer
  • The table below shows data of sprints of animals that traveled 75 meters. At each distance marker, the animals' times were recor
    6·2 answers
  • Resistance of rod is 1 ohm. It is bent in the form of square. The resistance across adjoint corners is.​
    10·1 answer
  • A skateboarder traveling at 4.45 m/s can be stopped by a strong force in 1.82 s and by a weak force in 5.34 s.
    5·1 answer
  • Suppose you analyze standardized test results for a country and discover almost identical distributions of physics scores for fe
    6·1 answer
  • Index of refraction
    15·1 answer
  • A rocket train car that is 30 m long is traveling from Los Angeles to New York at v=0.5c when a light at the center of the car f
    11·1 answer
  • Explica la relación entre momento de torsión y aceleración angular mencionando tres ejemplos Una varilla uniforme delgada mide 1
    13·1 answer
  • A transverse standing wave is set up on a string that is held fixed at both ends. The amplitude of the standing wave at an antin
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!