Answer:
Spring constant, k = 24.1 N/m
Explanation:
Given that,
Weight of the object, W = 2.45 N
Time period of oscillation of simple harmonic motion, T = 0.64 s
To find,
Spring constant of the spring.
Solution,
In case of simple harmonic motion, the time period of oscillation is given by :

m is the mass of object


m = 0.25 kg


k = 24.09 N/m
or
k = 24.11 N/m
So, the spring constant of the spring is 24.1 N/m.
Answer:
Explanation:
Impulse = change in momentum
mv - mu , v and u are final and initial velocity during impact at surface
For downward motion of baseball
v² = u² + 2gh₁
= 2 x 9.8 x 2.25
v = 6.64 m / s
It becomes initial velocity during impact .
For body going upwards
v² = u² - 2gh₂
u² = 2 x 9.8 x 1.38
u = 5.2 m / s
This becomes final velocity after impact
change in momentum
m ( final velocity - initial velocity )
.49 ( 5.2 - 6.64 )
= .7056 N.s.
Impulse by floor in upward direction
= .7056 N.s
Answer:

Explanation:
<u>Second Newton's Law</u>
It allows to compute the acceleration of an object of mass m subject to a net force Fn. The relation is given by

The net force is the sum of all vector forces applied to the object. The block has two horizontal forces applied (in absence of friction): The 30 N force acting to the right and the 60 N force to the left. The positive horizontal direction is assumed to the right, so the net force is

Thus, the acceleration can be computed by


The negative sign indicates the block is accelerated to the left
Answer:
The skater's speed after she stops pushing on the wall is 1.745 m/s.
Explanation:
Given that,
The average force exerted on the wall by an ice skater, F = 120 N
Time, t = 0.8 seconds
Mass of the skater, m = 55 kg
It is mentioned that the initial sped of the skater is 0 as it was at rest. The change in momentum of skater is :

The change in momentum is equal to the impulse delivered. So,

So, the skater's speed after she stops pushing on the wall is 1.745 m/s.
Kinetic Energy = 1/2xmassx(velocity)^2
Input values;
K.E=1/2x7kgx(4m/s)^2
K.E.=56J