Below are the choices that can be found in the other sources:
A. diffraction
<span>B. refraction </span>
<span>C. reflection </span>
<span>D. transmission
</span>
The answer is diffraction. It means that <span>the process by which a beam of light or other system of waves is spread out as a result of passing through a narrow aperture or across an edge, typically accompanied by interference between the wave forms produced.</span>
Answer:
D) accelerate but will not spin.
Explanation:
On the off chance that there is no air resistance the object will accelerate yet won't turn, this is on the grounds that without air resistance same force is applied on each bit of the object. Force on each segment is coordinated descending i.e parallel force. So there is no force to deliver spin movement in it.
It will accelerate because of gravity
Answer:
Hello your question is incomplete attached below is the complete question
Answer : x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Explanation:
Given data:
mass suspended = 4 meters
mass suspended at other end = 3 meters
first we have to express the kinetic and potential energy equations
The general kinetic energy of the system can be written as
T = 
T =
also the general potential energy can be expressed as
U = 
The Lagrangian of the problem can now be setup as

next we will take the Euler-Lagrange equation for the generalized equations :
Euler-Lagrange equation = 
solving the equations simultaneously
x ( acceleration of mass 4m ) = 
The top pulley rotates because it has to keep the center of mass of the system at equilibrium
Answer:
5.59 m/s
Explanation:
We are given;
Mass = 110 kg
Initial velocity: u = 13.41 m/s
Force = 615 N
Time(t) = 1 s
Now, the formula for force is;
Force = mass x acceleration
Thus;
615 = 110 × acceleration
\Acceleration(a) = 615/110 = 5.591 m/s²
Now, using Newton's first law of motion, we can find acceleration (a). Thus;
v = u + at
v = 13.41 + (5.591 × 1)
v ≈ 19 m/s
So,the change in velocity is;
Final velocity(v) - Initial velocity(u) = 19 - 13.41 = 5.59 m/s