Answer:
x = 1,185 m
, t = 4/3 s
, F = - 4 N
Explanation:
For this exercise we use Newton's second law
F = m a = m dv /dt
β - α t = m dv / dt
dv = (β – α t) dt
We integrate
v = β t - ½ α t²
We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t
v-v₀ = β t - ½ α t²
the farthest point of the body is when v = v₀ = 0
0 = β t - ½ α t²
t = 2 β / α
t = 2 4/6
t = 4/3 s
Let's find the distance at this time
v = dx / dt
dx / dt = v₀ + β t - ½ α t2
dx = (v₀ + β t - ½ α t2) dt
We integrate
x = v₀ t + ½ β t - ½ 1/3 α t³
x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³
The body comes out of rest
x = 3.5556 - 2.37
x = 1,185 m
The value of force is
F = β - α t
F = 4 - 6 4/3
F = - 4 N
Using the equation P = W/t to solve your problem .
Thus the answer is all of them use the same amount of power. 20 J.
DE which is the differential equation represents the LRC series circuit where
L d²q/dt² + Rdq/dt +I/Cq = E(t) = 150V.
Initial condition is q(t) = 0 and i(0) =0.
To find the charge q(t) by using Laplace transformation by
Substituting known values for DE
L×d²q/dt² +20 ×dq/dt + 1/0.005× q = 150
d²q/dt² +20dq/dt + 200q =150
This question deals with the law of conservation of momentum, which basically says that the total momentum in a system must stay the same, provided there are no outside forces. Since you were given the mass and velocity of the two objects you can find the momentum (p=mv) of each and then add them together to find the total momentum of the system before they collide. This total momentum must be the same after they collide. Since you have the mass and velocity of one of the objects after the collision you can find the its momentum after. Subtract this from the the system total and you will have the momentum of the other object after the collision. Now that you know the momentum of the other object you can find its velocity using p=mv and its mass from before.
Be careful with the velocities. They are vectors, so direction matters. Typically moving to the right is positive (+) and moving to the left is negative (-). It is not clear from your question which direction the objects are moving before and after the collision.
In Millikan oil drop experiment, when the switch is opened and by altering supply the charge of electron is determined.
Explanation:
Millikan's oil drop experiment is held to determine the terminal velocity and charge of the oil drop.
Firstly without any supply of voltage when an oil drop is sprinkled and these droplets gather electrons together and gives negative charge as they pass through air.
By applying and altering voltage applied on the plates, drop can be suspended in air. Millikan observed one drop after another, varying the voltage and noting the effect. After many repetitions he concluded that charge could assume only certain fixed values.
After conducting many times he concluded 1.602176487 ×10−19 C as the charge of an electron.