If the mass of the cylinder increases, the temperature of the water increases, because a greater mass means the cylinder has more potential energy that can be converted to thermal energy, increasing the temperature of the water.
Answer:
<h2>
187,500N/m</h2>
Explanation:
From the question, the kinectic energy of the train will be equal to the energy stored in the spring.
Kinetic energy = 1/2 mv² and energy stored in a spring E = 1/2 ke².
Equating both we will have;
1/2 mv² = 1/2ke²
mv² = ke²
m is the mass of the train
v is the velocity of then train
k is the spring constant
e is the extension caused by the spring.
Given m = 30000kg, v = 4 m/s, e = 4 - 2.4 = 1.6m
Substituting this values into the formula will give;
30000*4² = k*1.6²

The value of the spring constant is 187,500N/m
Answer:
The correct option is C
Explanation:
The pendulum bob would return at the same time because the initial angle a pendulum bob is dropped does not affect it's period (the time it takes for the pendulum to move back and forth), however the one with a larger angle move faster but would eventually arrive at the same "starting point" due to varying displacements made.
Answer:
<h2>a)
Nathan's acceleration is 5 m/s²
</h2><h2>b)
Nathan's displacement during this time interval is 15.625 m</h2><h2>
c) Nathan's average velocity during this time interval is 6.25 m/s</h2>
Explanation:
a) We have equation of motion v = u + at
Initial velocity, u = 0 m/s
Final velocity, v = 12.5 m/s
Time, t = 2.5 s
Substituting
v = u + at
1.25 = 0 + a x 2.5
a = 5 m/s²
Nathan's acceleration is 5 m/s²
b) We have equation of motion s = ut + 0.5 at²
Initial velocity, u = 0 m/s
Acceleration, a = 5 m/s²
Time, t = 2.5 s
Substituting
s = ut + 0.5 at²
s = 0 x 2.5 + 0.5 x 5 x 2.5²
s = 15.625 m
Nathan's displacement during this time interval is 15.625 m
c) Displacement = 15.625 m
Time = 2.5 s
We have
Displacement = Time x Average velocity
15.625 = 2.5 x Average velocity
Average velocity = 6.25 m/s
Nathan's average velocity during this time interval is 6.25 m/s