Answer:
part a : <em>The dry unit weight is 0.0616 </em>
<em />
part b : <em>The void ratio is 0.77</em>
part c : <em>Degree of Saturation is 0.43</em>
part d : <em>Additional water (in lb) needed to achieve 100% saturation in the soil sample is 0.72 lb</em>
Explanation:
Part a
Dry Unit Weight
The dry unit weight is given as

Here
is the dry unit weight which is to be calculated- γ is the bulk unit weight given as

- w is the moisture content in percentage, given as 12%
Substituting values

<em>The dry unit weight is 0.0616 </em>
<em />
Part b
Void Ratio
The void ratio is given as

Here
- e is the void ratio which is to be calculated
is the dry unit weight which is calculated in part a
is the water unit weight which is 62.4
or 0.04 
- G is the specific gravity which is given as 2.72
Substituting values

<em>The void ratio is 0.77</em>
Part c
Degree of Saturation
Degree of Saturation is given as

Here
- e is the void ratio which is calculated in part b
- G is the specific gravity which is given as 2.72
- w is the moisture content in percentage, given as 12% or 0.12 in fraction
Substituting values

<em>Degree of Saturation is 0.43</em>
Part d
Additional Water needed
For this firstly the zero air unit weight with 100% Saturation is calculated and the value is further manipulated accordingly. Zero air unit weight is given as

Here
is the zero air unit weight which is to be calculated
is the water unit weight which is 62.4
or 0.04 
- G is the specific gravity which is given as 2.72
- w is the moisture content in percentage, given as 12% or 0.12 in fraction

Now as the volume is known, the the overall weight is given as

As weight of initial bulk is already given as 4 lb so additional water required is 0.72 lb.
Answer:
1410 Hz
Explanation:
Capacitance is reduced by 2, so the angular frequency will increase by a factor of
.
Answer: -2 km
Explanation:
If we imagine Jin's movement to be the hypothenuse of a right triangle, then the southern component of Jin's movement corresponds to the side of the triangle opposite to the angle of 30 degrees. Therefore, the magnitude of this southern component is given by
However, the angle of 30 degrees is south of east: this means that the direction of this southern component is south, and since we generally take north as positive direction, we must add a negative sign, so the correct answer is
-2 km
Answer:
155.38424 K
2.2721 kg/m³
Explanation:
= Pressure at reservoir = 10 atm
= Temperature at reservoir = 300 K
= Pressure at exit = 1 atm
= Temperature at exit
= Mass-specific gas constant = 287 J/kgK
= Specific heat ratio = 1.4 for air
For isentropic flow

The temperature of the flow at the exit is 155.38424 K
From the ideal equation density is given by

The density of the flow at the exit is 2.2721 kg/m³
The height of the roof is <u>3.57m</u>
Let the drops fall at a rate of 1 drop per t seconds. The first drop takes 5t seconds to reach the ground. The second drop takes 4t seconds to reach the bottom of the 1.00 m window, while the 3rd drop takes 3t s to reach the top of the window.
Calculate the distances traveled by the second and the third drops s₂ and s₃, which start from rest from the roof of the building.

The length of the window s is given by,

The first drop is at the bottom and it takes 5t seconds to reach down.
The height of the roof h is the distance traveled by the first drop and is given by,

the height of the roof is 3.57 m