answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
TiliK225 [7]
2 years ago
14

Type the correct answer in each box. Use numerals instead of words. If necessary, use / for the fraction bar. In a survey conduc

ted in an office, 60% of the sample respondents agreed that employees should have flexible working hours. If the margin of error is ±2%, the expected population proportion that wants flexible working hours is between __% and __%
Physics
1 answer:
jarptica [38.1K]2 years ago
3 0

Answer: The expected population that wants flexible working hours in ranging from 58% to 62 %.

Explanation:

Percentage of sample respondents agreed for flexible working hours = 60%

The margin of the error = ± 2%

The expected population that wants flexible working hours in ranging from:

\text{percentage of agreed}-2\% lower range

\text{percentage of agreed}+\2% upper range

60\%-2\% to 60\%+2\% that is 58% to 62 %.

The expected population that wants flexible working hours in ranging from 58% to 62 %.

You might be interested in
Karyotypes are done by matching up _____________________________ so that they are paired up. Question 11 options:
Rufina [12.5K]

Homologous Chromosomes

6 0
2 years ago
Read 2 more answers
For some metal alloy, a true stress of 345 MPa (50040 psi) produces a plastic true strain of 0.02. How much will a specimen of t
Juliette [100K]

Answer:

24.348mm

Explanation:

NB: I'll be attaching pictures so as to depict missing mathematical expressions or special characters which are not easily found on keyboards

K = d / €^n

Note : d represents the greek alphabet epsilion.

K = 345 / 0.02⁰.²² = 816mPa

The true strain based upon the stress of 414mPa =

€= (€/k)^1/n = (414/816)¹/⁰.²² = 0.04576

However the true relationship between true strain and length is given by

€ = ln(Li/Lo)

Making Li the subject of formula by rearranging,

Li = Lo.e^€

Li = 520e⁰.⁰⁴⁵⁷⁶

Li = 544.348mm

The amount of elongation can be calculated from

Change in L = Li - Lo = 544.348 - 520 change in L = 24.348mm.

8 0
2 years ago
If Emily throws the ball at an angle of 30∘ below the horizontal with a speed of 12m/s, how far from the base of the dorm should
Hitman42 [59]

Answer:

3.6 m

Explanation:

let x = horizontal distance between emily and allison should be for allison to catch the ball

Find horizontal speed of the ball

vx = 12 sin 30 = 12 x 0.5 = 6 m/s

To find time taken, we will use vertical values of the ball motion

Initial velocity in vertical direction

u = 12 cos 30 = 10.392 m/s

let a = g = 9.8m/s2

Use equation of motion

s = ut +1/2at^2

s = vertical distance = 8

8 = (10.392)t + (1/2)(9.8)t^2

8 = (10.392)t + (4.9)t^2

4.9t^2 + 10.392t - 8 = 0

Using formula of quadratic or calculator, we'll find

t = 0.6 and t = -2.72

We pick t=0.6s since it's not logical time in negative

Assuming no air resistance or external forces, the ball will move 6m/s horizontally. Hence using the formula of speed

speed vx = distance x / time

x = (vx)(t)

  = 6 x 0.6

  = 3.6 m

6 0
2 years ago
In certain cases, using both the momentum principle and energy principle to analyze a system is useful, as they each can reveal
SpyIntel [72]

Answer:

A) F_g = 26284.48 N

B) v = 7404.18 m/s

C) E = 19.19 × 10^(10) J

Explanation:

We are given;

Mass of satellite; m = 3500 kg

Mass of the earth; M = 6 x 10²⁴ Kg

Earth circular orbit radius; R = 7.3 x 10⁶ m

A) Formula for the gravitational force is;

F_g = GmM/r²

Where G is gravitational constant = 6.67 × 10^(-11) N.m²/kg²

Plugging in the relevant values, we have;

F_g = (6.67 × 10^(-11) × 3500 × 6 x 10²⁴)/(7.3 x 10⁶)²

F_g = 26284.48 N

B) From the momentum principle, we have that the gravitational force is equal to the centripetal force.

Thus;

GmM/r² = mv²/r

Making v th subject, we have;

v = √(GM/r)

Plugging in the relevant values;

v = √(6.67 × 10^(-11) × 6 x 10²⁴)/(7.3 x 10⁶))

v = 7404.18 m/s

C) From the energy principle, the minimum amount of work is given by;

E = (GmM/r) - ½mv²

Plugging in the relevant values;

E = [(6.67 × 10^(-11) × 3500 × 6 × 10²⁴)/(7.3 x 10⁶)] - (½ × 3500 × 7404.18)

E = 19.19 × 10^(10) J

5 0
2 years ago
two students are on a balcony 19.6 m above the street. one student throws a ball vertically downward at 14.7 m:ds. at the same i
NARA [144]

A. The difference in the two ball's time in the air is 3 seconds

B. The velocity of each ball as it strikes the ground is 24.5 m/s

C. The balls 0.500 s after they are thrown are 14.7 m apart

<h3>Further explanation</h3>

Acceleration is rate of change of velocity.

\large {\boxed {a = \frac{v - u}{t} } }

\large {\boxed {d = \frac{v + u}{2}~t } }

<em>a = acceleration ( m/s² )</em>

<em>v = final velocity ( m/s )</em>

<em>u = initial velocity ( m/s )</em>

<em>t = time taken ( s )</em>

<em>d = distance ( m )</em>

Let us now tackle the problem!

<u>Given:</u>

Initial Height = H = 19.6 m

Initial Velocity = u = 14.7 m/s

<u>Unknown:</u>

A. Δt = ?

B. v = ?

C. Δh = ?

<u>Solution:</u>

<h2>Question A:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

0 = 19.6 - 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 - 14.7t - 4.9t^2

4.9t^2 + 14.7t - 19.6 = 0

t^2 + 3t - 4 = 0

(t + 4)(t - 1) = 0

(t - 1) = 0

\boxed {t = 1 ~ second}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

0 = 19.6 + 14.7t - \frac{1}{2}(9.8)t^2

0 = 19.6 + 14.7t - 4.9t^2

4.9t^2 - 14.7t - 19.6 = 0

t^2 - 3t - 4 = 0

(t - 4)(t + 1) = 0

(t - 4) = 0

\boxed {t = 4 ~ seconds}

The difference in the two ball's time in the air is:

\Delta t = 4 ~ seconds - 1 ~ second

\large {\boxed {\Delta t = 3 ~ seconds} }

<h2>Question B:</h2><h3>First Ball</h3>

v^2 = u^2 - 2gH

v^2 = (-14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

<h3>Second Ball</h3>

v^2 = u^2 - 2gH

v^2 = (14.7)^2 + 2(-9.8)(-19.6)

v^2 = 600.25

v = \sqrt {600.25}

\boxed {v = 24.5 ~ m/s}

The velocity of each ball as it strikes the ground is 24.5 m/s

<h2>Question C:</h2><h3>First Ball</h3>

h = H - ut - \frac{1}{2}gt^2

h = 19.6 - 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 11.025 ~ m}

<h3>Second Ball</h3>

h = H + ut - \frac{1}{2}gt^2

h = 19.6 + 14.7(0.5) - \frac{1}{2}(9.8)(0.5)^2

\boxed {h = 25.725 ~ m}

The difference in the two ball's height after 0.500 s is:

\Delta h = 25.725 ~ m - 11.025 ~ m

\large {\boxed {\Delta h = 14.7 ~ m} }

<h3>Learn more</h3>
  • Velocity of Runner : brainly.com/question/3813437
  • Kinetic Energy : brainly.com/question/692781
  • Acceleration : brainly.com/question/2283922
  • The Speed of Car : brainly.com/question/568302

<h3>Answer details</h3>

Grade: High School

Subject: Physics

Chapter: Kinematics

Keywords: Velocity , Driver , Car , Deceleration , Acceleration , Obstacle

6 0
2 years ago
Other questions:
  • A net force of 125 n is applied to a certain object. as a result, the object accelerates with an acceleration of 24.0 m/s2. the
    12·2 answers
  • What volume in milliliters will 0.00922 g of h2 gas occupy at stp?
    12·1 answer
  • Please help! Kiki makes a table to compare the particles in a magnesium atom to those in a magnesium ion. She knows that a magne
    5·2 answers
  • Physics students use a spring scale to measure the weight of a piece of lead. The experiment was performed two times: once in th
    15·1 answer
  • Calculate the critical angle between glass (n = 1.90) and ice (n = 1.31)? 43° 52° 60° 75°
    14·1 answer
  • A goat enclosure is in the shape of a right triangle. One leg of the enclosure is built against the side of the barn. The other
    8·1 answer
  • Fill in the terms that accurately complete the statements. The nucleus contains positively charged particles called and neutral
    11·2 answers
  • a horse gallops a distance of 60 meters in 15 seconds. then, he stops to eat some grass for 20 seconds. next, he trots for 25 se
    5·1 answer
  • Tyler drives 50km north. Tyler then drives back 30km south. What distance did he cover? What was his displacement?
    11·1 answer
  • If Katie swims from one end of the pool, to the other side, and then swims back to her original spot, her average velocity is ha
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!