Answer:
The wavelength of the incident light is
400 nm
Explanation:
Given data
Distance between the sits

d = 1.5 ×
m
°
m = 2
We know that the wavelength of the incident light is given by

Put all the value in above formula we get
×
4 ×
m
400 nm
Therefore the wavelength of the incident light is
400 nm
Answer:
Answer:
1.1 x 10^9 ohm metre
Explanation:
diameter = 1.5 mm
length, l = 5 cm
Potential difference, V = 9 V
current, i = 230 micro Ampere = 230 x 10^-6 A
radius, r = diameter / 2 = 1.5 / 2 = 0.75 x 10^-3 m
Let the resistivity is ρ.
Area of crossection
A = πr² = 3.14 x 0.75 x 0.75 x 10^-6 = 1.766 x 10^-6 m^2
Use Ohm's law to find the value of resistance
V = i x R
9 = 230 x 10^-6 x R
R = 39130.4 ohm
Use the formula for the resistance



ρ = 1.1 x 10^9 ohm metre
Explanation:
Answer:
the correct answer is E
A graph of the cart's maximum speed squared as a function of x^3
Explanation:
For this exercise let's use Newton's second law
F = m a
force has the form
F = k x²
and acceleration is related to velocity
a = dv / dt
Let's use the chain rule or L'Hospital
a = dv /dx dx/dt
a = dv /dx v
let's substitute
k x² = m v dv / dx
k /m x² dx = v dv
we integrate
k /m x³ /3 = v² / 2
v² = (2k /3m) x³
This is the expression for the variation of the speed as a function of the position, to make a linear graph realism the changes of variable
y = v²
x´ = x³
y = (2k/3m) x´
if we graph y vs x 'we have a linear graph whose slope is
m = 2k / 3m
By reviewing the different answers, the correct answer is E
Answer:
v = 13.19 m / s
Explanation:
This problem must be solved using Newton's second law, we create a reference system where the x-axis is perpendicular to the cylinder and the Y-axis is vertical
X axis
N = m a
Centripetal acceleration is
a = v² / r
Y Axis
fr -W = 0
fr = W
The force of friction is
fr = μ N
Let's calculate
μ (m v² / r) = mg
μ v² / r = g
v² = g r / μ
v = √ (g r /μ)
v = √ (9.8 11 / 0.62)
v = 13.19 m / s
Answer:
V = 2.5 J/C
Explanation:
<u><em>Given:</em></u>
Energy = E = 20 J
Charge = Q = 8 C
<u><em>Required:</em></u>
Potential Difference = V = ?
<u><em>Formula:</em></u>
V = 
<u><em>Solution:</em></u>
V = 20/8
V = 2.5 J/C