Answer:
1340.2MW
Explanation:
Hi!
To solve this problem follow the steps below!
1 finds the maximum maximum power, using the hydraulic power equation which is the product of the flow rate by height by the specific weight of fluid
W=αhQ
α=specific weight for water =9.81KN/m^3
h=height=220m
Q=flow=690m^3/s
W=(690)(220)(9.81)=1489158Kw=1489.16MW
2. Taking into account that the generator has a 90% efficiency, Find the real power by multiplying the ideal power by the efficiency of the electric generator
Wr=(0.9)(1489.16MW)=1340.2MW
the maximum possible electric power output is 1340.2MW
Answer:
Force applied to smaller cross section is
= 82.63 N
Explanation:
As we know

where
signifies the weight of the two chair in a hydraulic-lift system
And
signifies the area of the two respective chairs in a hydraulic-lift system
Given -
N
Square centimeter
Square centimeter
Substituting the given values in above equation, we get -

Force applied to smaller cross section is
= 82.63 N
The period of the second pendulum is 0.9 s
Explanation:
The period of a simple pendulum is given by the equation

where
L is the length of the pendulum
g is the acceleration of gravity at the location of the pendulum
For the first pendulum, we have
L = 0.64 m
T = 1.2 s
Therefore we can find the value of g at that location:

Now we can find the period of the second pendulum at the same location, which is given by

where we have
L = 0.36 m (length of the second pendulum)

Substituting,

#LearnwithBrainly
Answer:
Telescope
Explanation:
Telescope is usually defined as an optical instrument that is commonly used to observe the objects in a magnified way that are located at a large distance from earth. These telescopes are comprised of lenses and curved mirrors that are needed to be arranged in a proper way in order to have a prominent look. It is commonly used by the astronomers.
This was first constructed by Hans Lippershey in the year 1608.