answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nutka1998 [239]
2 years ago
12

At a certain instant after jumping from the airplane A, a skydiver B is in the position shown and has reached a terminal (consta

nt) speed vB = 52 m/s. The airplane has the same constant speed vA = 52 m/s, and after a period of level flight is just beginning to follow the circular path shown of radius ρA = 2330 m. (a) Determine the velocity and acceleration of the airplane relative to the skydiver. (b) Determine the time rate of change of the speed vr of the airplane and the radius of curvature ρr of its path, both as observed by the nonrotating skydiver.
Physics
1 answer:
Lubov Fominskaja [6]2 years ago
6 0

Answer:

a=2330

b= 0.223secs

Explanation:

pb=2330m

t=0.223secs

You might be interested in
A radio station's channel, such as 100.7 fm or 92.3 fm, is actually its frequency in megahertz (mhz), where 1mhz=106 hz and 1hz=
AURORKA [14]
The frequency of the radio station is
f=88.7 fm= 88.7 MHz = 88.7 \cdot 10^6 Hz

For radio waves (which are electromagnetic waves), the relationship between frequency f and wavelength \lambda is
\lambda= \frac{c}{f}
where c is the speed of light. Substituting the frequency of the radio station, we find the wavelength:
\lambda= \frac{3 \cdot 10^8 m/s}{88.7 \cdot 10^6 Hz}=3.38 m
6 0
2 years ago
Read 2 more answers
A stationary 1.67-kg object is struck by a stick. The object experiences a horizontal force given by F = at - bt2, where t is th
Usimov [2.4K]

Answer:

v_{f}  = 3289.8 m / s

Explanation:

This exercise can be solved using the definition of momentum

     I = ∫ F dt

Let's replace and calculate

     I = ∫ (at - bt²) dt

We integrate

      I = a t² / 2 - b t³ / 3

We evaluate between the lower limits I=0  for t = 0 s and higher I=I for t = 2.74 ms

      I = a (2,74² / 2- 0) - b (2,74³ / 3 -0)

      I = a 3,754 - b 6,857

We substitute the values ​​of a and b

      I = 1500 3,754 - 20 6,857

      I = 5,631 - 137.14

      I = 5493.9 N s

Now let's use the relationship between momentum and momentum

      I = Δp = m v_{f} - m v₀o

      I = m v_{f}  - 0

     v_{f}  = I / m

    v_{f}  = 5493.9 /1.67

    v_{f}  = 3289.8 m / s

5 0
2 years ago
For an object starting from rest and accelerating with constant acceleration, distance traveled is proportional to the square of
natali 33 [55]

The problem states that the distance travelled (d) is directly proportional to the square of time (t^2), therefore we can write this in the form of:

d = k t^2

where k is the constant of proportionality in furlongs / s^2

 

<span>Using the 1st condition where d = 2 furlongs, t = 2 s, we calculate for the value of k:</span>

2 = k (2)^2

k = 2 / 4

k = 0.5 furlongs / s^2

The equation becomes:

d = 0.5 t^2

 

Now solving for d when t = 4:

d = 0.5 (4)^2

d = 0.5 * 16

<span>d = 8 furlongs</span>

<span>
</span>

<span>It traveled 8 furlongs for the first 4.0 seconds.</span>

8 0
2 years ago
A front wheel drive car starts from rest and accelerates to the right. Knowing that the tires do not slip on the road, what is t
Korolek [52]

Answer:

static friction acting opposite to the direction of travel

Explanation:

Because the Frictional force of the front wheels act to oppose the spinning, so, For the front wheels to roll without slipping, the friction must be static friction pointing in the direction of travel of the car.

Explanation:

8 0
2 years ago
Assume that you stay on the earth's surface. what is the ratio of the sun's gravitational force on you to the earth's gravitatio
Pachacha [2.7K]
First, let's determine the gravitational force of the Earth exerted on you. Suppose your weight is about 60 kg. 

F = Gm₁m₂/d²
where
m₁ = 5.972×10²⁴ kg (mass of earth)
m₂ = 60 kg
d = 6,371,000 m (radius of Earth)
G = 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²

F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(5.972×10²⁴ kg)/(6,371,000 m )²
F = 589.18 N

Next, we find the gravitational force exerted by the Sun by replacing,
m₁ = 1.989 × 10³⁰<span> kg
Distance between centers of sun and earth = 149.6</span>×10⁹ m
Thus,
d = 149.6×10⁹ m - 6,371,000 m = 1.496×10¹¹ m

Thus,
F = ( 6.67408 × 10⁻¹¹ m³ kg⁻¹ s⁻²)(60 kg)(1.989 × 10³⁰ kg)/(1.496×10¹¹ m)²
F = 0.356  N

Ratio = 0.356  N/589.18 N
<em>Ratio = 6.04</em>
5 0
2 years ago
Read 2 more answers
Other questions:
  • At what condition does a body become weightless at the equator?
    8·1 answer
  • A carnot cycle engine operates between a low temperature reservoir at 20°c and a high temperature reservoir at 800°c. if the eng
    15·1 answer
  • A person driving a car applies the brakes. This produces friction, which stops the car. Into which type of energy is the mechani
    8·2 answers
  • If 500 J of energy were added to 1 kg of each of these samples, which would experience the LEAST temperature increase? aluminum,
    6·2 answers
  • Charlie is playing with his daughter Torrey in the snow. She sits on a sled and asks him to slide her across a flat, horizontal
    10·2 answers
  • A car is driving around a banked curve, with the road surface at an angle of 10.0º. If the radius of curvature of the road is 30
    14·1 answer
  • A bar extends perpendicularly from a vertical wall. The length of the bar is 2 m, and its mass is 10 kg. The free end of the rod
    5·1 answer
  • A group of students prepare for a robotic competition and build a robot that can launch large spheres of mass M in the horizonta
    9·1 answer
  • Which change will cause the gravitational force between a baseball and a soccer ball to increase?
    9·2 answers
  • The net force acting on a Cessna 172 airplane has a magnitude of 1900 N and points in the positive x direction. If the plane has
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!