To solve this problem, we will start by defining each of the variables given and proceed to find the modulus of elasticity of the object. We will calculate the deformation per unit of elastic volume and finally we will calculate the net energy of the system. Let's start defining the variables
Yield Strength of the metal specimen

Yield Strain of the Specimen

Diameter of the test-specimen

Gage length of the Specimen

Modulus of elasticity



Strain energy per unit volume at the elastic limit is



Considering that the net strain energy of the sample is




Therefore the net strain energy of the sample is 
Answer:
457.81 Hz
Explanation:
From the question, it is stated that it is a question under Doppler effect.
As a result, we use this form
fo = (c + vo) / (c - vs) × fs
fo = observed frequency by observer =?
c = speed of sound = 332 m/s
vo = velocity of observer relative to source = 45 m/s
vs = velocity of source relative to observer = - 46 m/s ( it is taking a negative sign because the velocity of the source is in opposite direction to the observer).
fs = frequency of sound wave by source = 459 Hz
By substituting the the values to the equation, we have
fo = (332 + 45) / (332 - (-46)) × 459
fo = (377/ 332 + 46) × 459
fo = (377/ 378) × 459
fo = 0.9974 × 459
fo = 457.81 Hz
Answer:
0.6295 A
Explanation:
I=mg/BL put values in this formula.
Answer:
Explanation:
Given
Ray of light incident on plane making an angle of
with normal
Thus incident angle 
So according to the law of incidence is equal to angle of reflection

thus 
and angle between mirror and reflected ray 
