Answer:
Mass of bike = 38 kg.
Explanation:
Kinetic energy is given by the expression,
, where m is the mass and v is the velocity.
Here speed of child riding bike = 6 m/s
Mass of child = 30 kg
Total kinetic energy = 1224 J
Let the mass of bike be, m kg
So, total mass of child and bike = (m + 30) kg
Substituting,

So, mass of bike = 38 kg.
Answer:
(a) Angle of incidence for violet is more than the angle of incidence for red
(b) 2.4°
Explanation:
refractive index for violet , v = 1.66
refractive index for red, nR = 1.61
wavelength for violet, λv = 400 nm
wavelength for red, λR = 700 nm
Angle of refraction, r = 30°
(a) Let iv be the angle of incidence for violet.
Use Snell,s law
nv = Sin iv / Sin r
1.66 = Sin iv / Sin 30
Sin iv = 0.83
iv = 56°
Use Snell's law for red
nR = Sin iR / Sin r
where, iR be the angle of incidence for red
1.61 = Sin iR / Sin 30
Sin iR = 0.805
iR = 53.6°
So, the angle of incidence for violet is more than red.
(b) iv - iR = 56° - 53.6° = 2.4°
Lucite has a refractive index of n=1.50. This means that the speed of the light in lucite is decreased according to:

where

is the speed of light in air. Putting the number in the formula, we find that the speed of light in lucite is

The frequency of the light is

, so now we can calculate the wavelength in lucite by using the formula:

<span>Therefore, the correct answer is (2) 393 nm.</span>
The answer for this change in the magnitude of momentum is the same for both because momentum is always conserved so both vehicles have the identical change.
So for determining who has the greater change in kinetic energy, momentum (P) = mv so P^2 = m^2 v^2 P^2 / 2m = 1/2 m v^2 = energy So the weightier the mass the smaller the energy change for the same momentum change so in here, the car has a greater change in kinetic energy.
Momentum question. This is an inelastic collision, so
m1v1+m2v2=Vf(m1+m2)
Vf=(m1v1+m2v2)/(m1+m2)=[(120kg)(0m/s)+(60kg)(2m/s)] / (120kg+60kg)
Vf=120kg m/s / 180kg
Vf=0.67m/s
0.67m/s