answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
BartSMP [9]
1 year ago
6

Scientific knowledge builds upon previous knowledge."

Physics
1 answer:
notka56 [123]1 year ago
4 0

Answer:

B

Explanation:

Magic

You might be interested in
When you come within 100 ft of the uncontrolled railroad crossing and you cannot see the tracks for 400 ft in both directions, t
Sergio039 [100]
The answer to the blank above is 20. The speed limit given provided that you cannot see the tracks for 400 ft in both directions is always 20 mph. Basically, this 20 mph is decided based upon the traffic laws in order to avoid road casualties. Since it is "uncontrolled railroad crossing", the minimum speed should be implemented to slow down for the purpose of traffic calming measures. Other than this, the 20 mph is also applicable in narrowing roads as well as speed humps.
6 0
2 years ago
A certain amusement park ride consists of a large rotating cylinder of radius R=3.05 m.R=3.05 m. As the cylinder spins, riders i
aniked [119]

Answer:

a. N = 2.49W b.  0.40

Explanation:

a. What is the magnitude of the normal force FNFN between a rider and the wall, expressed in terms of the rider's weight W?

Since the normal force equals the centripetal force on the rider, N = mrω² where r = radius of cylinder = 3.05 m and ω = angular speed of cylinder = 0.450 rotations/s = 0.450 × 2π rad/s = 2.83 rad/s

Now N = mrω² = m(3.05 m) × (2.83 rad/s)² = 24.43m

The rider's weight W = mg = 9.8m

The ratio of the normal force to the rider's weight is

N/W = 24.43m/9.8m = 2.49

So the normal force expressed in term's of the rider's weight is

N = 2.49W

b. What is the minimum coefficient of static friction µsμs required between the rider and the wall in order for the rider to be held in place without sliding down?

The frictional force, F on the rider by the wall of the cylinder equals the weight, W of the rider. F = W.

Since the frictional force F = μN, where μ = coefficient of static friction between rider and wall of cylinder and N = normal force between rider and wall of cylinder.

So, the normal force equals

N = F/μ = W/μ = mg/μ = mrω²

μ  = mg/mrω²

= W/N

= 9.8m/24.43m

= 0.40

6 0
1 year ago
Starting from equilibrium at point 0, what point on the pv diagram will describe the ideal gas after the following process? lock
Anna71 [15]
Since the product of P·Vis constant along an isotherm, an expansion to twice the volume implies a pressure reduction to half the original pressure. I hope my answer has come to your help. God bless and have a nice day ahead!<span>
</span>
3 0
1 year ago
Read 2 more answers
You are on vacation in San Francisco and decide to take a cable car to see the city. A 5800-kgkg cable car goes 260 mm up a hill
Stella [2.4K]

Answer:

4.325\times10^6J

Explanation:

Mass of the cable car, m = 5800 kg

It goes 260 m up a hill, along a slope of \theta=17^o

Therefore vertical elevation of the car = 260sin\theta=260sin17^o=76.0166m

Now, when you get into the cable car, it's velocity is zero, that is, initial kinetic energy is zero (since K.E. = \frac{1}{2} mv^2). Similarly as the car reaches the top, it halts and hence final kinetic energy is zero.

Therefore the only possible change in the cable car system is the change in it's gravitational potential energy.

Hence, total change in energy = mgh = 5800\times9.81\times76.0166J=4.325\times10^6J

where, g = acceleration due to gravity

h = height/vertical elevation

4 0
1 year ago
A uniform 1.0-N meter stick is suspended horizontally by vertical strings attached at each end. A 2.0-N weight is suspended from
fgiga [73]

Answer:

3.5 N

Explanation:

Let the 0-cm end be the moment point. We know that for the system to be balanced, the total moment about this point must be 0. Let's calculate the moment at each point, in order from 0 to 100cm

- Tension of the string attached at the 0cm end is 0 as moment arm is 0

- 2 N weight suspended from the 10 cm position: 2*10 = 20 Ncm clockwise

- 2 N weight suspended from the 50 cm position: 2*50 = 100 Ncm clockwise

- 1 N stick weight at its center of mass, which is 50 cm position, since the stick is uniform: 1*50 = 50 Ncm clockwise

- 3 N weight suspended from the 60 cm position: 3*60 = 180 Ncm clockwise

- Tension T (N) of the string attached at the 100-cm end: T*100 = 100T Ncm counter-clockwise.

Total Clockwise moment = 20 + 100 + 50 + 180 = 350Ncm

Total counter-clockwise moment = 100T

For this to balance, 100 T = 350

so T = 350 / 100 = 3.5 N

4 0
1 year ago
Other questions:
  • Determine which type of property each statement describes by typing “physical” or “chemical” in the blank. Hydrogen is a colorle
    7·2 answers
  • A piano wire has a length of 81 cm and a mass of 2.0
    6·1 answer
  • The stimuli for kinesthesis is the __________ energy of joint and muscle movement. A. thermal B. electrical C. mechanical D. che
    13·2 answers
  • Which of these shows unbalanced forces at work on an object? A. an ice skater turning as he skates around an ice rink B. a bicyc
    6·2 answers
  • in a thermal power plant, heat from the flue gases is recovered in (A) chimney (B) de-super heater (C) economizer (D) condenser
    6·1 answer
  • Suppose that a barometer was made using oil with rho=900 kg/m3. What is the height of the barometer at atmospheric pressure?
    10·1 answer
  • platform diving in the olympic games takes place at two heights: 5 meters and 10 meters. What is the velocity of a diver enterin
    5·1 answer
  • Workers do 8000 J of work on a 2000-N crate to push it up a ramp. If the ramp is 2 m high, what is the efficiency of the ramp?
    9·2 answers
  • A helicopter, starting from rest, accelerates straight up from the roof of a hospital. The lifting force does work in raising th
    11·1 answer
  • 10 C of charge are placed on a spherical conducting shell. A point particle with a charge of –3C is placed at the center of the
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!