As an object accelerates i.e., change it's velocity(either direction or speed), the position of the object depends on two factor; If the acceleration was direction based then it might have a zero displacement for eg: if it travels in circle. or it might have a net displacement if it travels in a straight line, quantitatively

where,
s = displacement
u = initial velocity
v = final velocity
a = acceleration
t = time
Now, for the hypothesis;
There is no direct relationship between fan speed and acceleration but anyways generally speaking if we do have a relationship that with more fan speed we have a larger displacement of air i.e., a more force i.e., greater acceleration
Thus, it can be said, well not exactly scientific, that with a greater fan speed there will be greater acceleration. if fan speed is increased then acceleration will be more.
:)
Answer:
t=0.704s
Explanation:
A child is running his 46.1 g toy car down a ramp. The ramp is 1.73 m long and forms a 40.5° angle with the flat ground. How long will it take the car to reach the bottom of the ramp if there is no friction?
from newton equation of motion , we look for the y component of the speed and look for the x component of the speed. we can then find the resultant of the speed

Vy^2=0+2*9.8*1.73sin40.5
Vy^2=22.021
Vy=4.69m/s
Vx^2=u^2+2*9.81*cos40.5
Vy^2=25.81
Vy=5.08m/s
V=(Vy^2+Vx^2)^0.5
V=47.71^0.5
V=6.9m/s
from newtons equation of motion we know that force applied is directly proportional to the rate of change in momentum on a body.
f=force applied
v=velocity final
u=initial velocity
m=mass of the toy, 0.046
f=ma
f=m(v-u)/t
v=u+at
6.9=0+9.8t
t=6.9/9.81
t=0.704s
Following statements are true
(i) The leather jacket has a lower tendency to attract electrons than sweater.
When the sweater and the leather jacket are in contact with each other, the leather jacket loses electrons and thus becomes positively charged. the electrons are gained by the sweater and it becomes negatively charges.
The opposite charge attract. so the sweater ( negatively charged) will attract protons ( positively charged) . The leather jacket ( positively charged) will attract the electrons ( negatively charged).
Answer:
L = mp*v₀*(ms*D) / (ms + mp)
Explanation:
Given info
ms = mass of the hockey stick
uis = 0 (initial speed of the hockey stick before the collision)
xis = D (initial position of center of mass of the hockey stick before the collision)
mp = mass of the puck
uip = v₀ (initial speed of the puck before the collision)
xip = 0 (initial position of center of mass of the puck before the collision)
If we apply
Ycm = (ms*xis + mp*xip) / (ms + mp)
⇒ Ycm = (ms*D + mp*0) / (ms + mp)
⇒ Ycm = (ms*D) / (ms + mp)
Now, we can apply the equation
L = m*v*R
where m = mp
v = v₀
R = Ycm
then we have
L = mp*v₀*(ms*D) / (ms + mp)
Answer:
The magnitude of the total linear acceleration is 0.27 m/s²
b. 0.27 m/s²
Explanation:
The total linear acceleration is the vector sum of the tangential acceleration and radial acceleration.
The radial acceleration is given by;

where;
a is the angular acceleration and
r is the radius of the circular path

Determine time of the rotation;

Determine angular velocity
ω = at
ω = 1.6 x 0.707
ω = 1.131 rad/s
Now, determine the radial acceleration

The magnitude of total linear acceleration is given by;

Therefore, the magnitude of the total linear acceleration is 0.27 m/s²
b. 0.27 m/s²