Answer:
The magnitude of the resultant acceleration is 2.2 
Explanation:
Mass (m) of the sailboat = 2000 kg
Force acting on the sailboat due to ocean tide is
= 3000N
Eastwards means takes place along the positive x direction
Then
= 3000N and
= 0
Wind Force acting on the Sailboat is
= 6000N directed towards the northwest that means at an angle 45 degree above the negative x axis
Then
= -(6000N) cos 45 degree = -4242.6 N
= (6000N) cos 45 degree = 4242.6 N
Hence , the net force acting on the sailboat in x direction is

= - 3000 N + 4242.6 N
= - 3000 N +4242.6 N
= 1242.6N
Net Force acting on the sailboat in y direction is

= 0+ 4242.6N
= 4242.6N
The magnitude of the resultant force =
Using pythagorean theorm of 1243 N and 4243 N



4420.8 N
F = ma


=2.2 
Answer:
<em>A) Beam B carries twice as many photons per second as beam A.</em>
Explanation:
If we have two waves with the same wavelength, then their intensity is proportional to their power, or the energy per unit time.
We also know that the amount of photon present in an electromagnetic beam is proportional to the energy of the beam, hence the amount of beam per second is proportional to the power.
With these two facts, we can say that the intensity is a measure of the amount of photon per second in an electromagnetic beam. So we can say that <em>beam B carries twice as more power than beam A, or Beam B carries twice as many photons per second as beam A.</em>
the correct answer is 27 hours per week :) hope this helps
Answer:
The simplified expression is 
Explanation:
From the question we are told that

So simplifying we have


Thus the simplified formula is 
Answer:
the final temperature of the gas is 785.18 K
Explanation:
The computation of the final temperature of the gas is shown below:
Here we apply the gas law
= PV ÷ T
Given that
P1 = 1.9 atm
V1 = 24.6 L
T1 = 335 K
P2 = 3.5 atm
V2 = 31.3 L
T2 = ?
Now
P1V1 ÷ T1 = P2V2 ÷ T2
(1.9 × 24.6) ÷ 335 = (3.5 × 31.3)/T2
T2 = 785.18 K
hence, the final temperature of the gas is 785.18 K