It is given that by using track and cart we can record the time and the distance travelled and also the speed of the cart can be recorded. With all this data we can solve questions on the laws of motion.
Like using the first law of motion we can determine the force of gravity acting on the cart that has moved a certain distance and the velocity or the speed of card has already been registered and since time is known putting the values in formula would help us calculate the gravitational pull acting on cart.
Using Ohm's Law, we can derived from this the value of resistance. If I=V/R, therefore, R = V/I
Substituting the values to the given,
P = Power = ?
R = Resistance = ?
V = Voltage = 2.5 V
I = Current = 750 mA
R = V/I = 2.5/ (750 x 10^-3)
R = 3.33 ohms
Calculating the power, we have P = IV
P = (750 x 10^-3)(2.5)
P = 1.875 W
The power consumption is the power consumed multiply by the number of hours. In here, we have;
1.875W x 4 hours = 7.5 watt-hours
Inversely proportional to its frequency. If electromagnetic radiation A has a lower frequency than electromagnetic B, then compared to B, the wavelength of A is...? - equal - shorter - longer - exactly half the length of
Answer: the correct answer is 7.8026035971 x 10^(-13) joule
Explanation:
Use Energy Conservation. By ``alpha decay converts'', we mean that the parent particle turns into an alpha particle and daughter particles. Adding the mass of the alpha and daughter radon, we get
m = 4.00260 u + 222.01757 u = 226.02017 u .
The parent had a mass of 226.02540 u, so clearly some mass has gone somewhere. The amount of the missing mass is
Delta m = 226.02540 u - 226.02017 u = 0.00523 u ,
which is equivalent to an energy change of
Delta E = (0.00523 u)*(931.5MeV/1u)
Delta E = 4.87 MeV
Converting 4.87 MeV to Joules
1 joule [J] = 6241506363094 mega-electrón voltio [MeV]
4 mega-electrón voltio = 6.40870932 x 10^(-13) joule
4.87 mega-electrón voltio = 7.8026035971 x 10^(-13) joule
You want v2 = v1 + at
v is measured in m/s, a in m/s2, and t in s.
the dimensions multiply like algebraic quantities.
so because v2 is measured in m/s, then (v1 + at) has to come out in m/s
the units for (v1 + at) are (m/s) + (m/s2)(s)
time "s" cancels out one acceleration "s", so it comes ut to (m/s) + (m/s), which = (m/s).
if you had (v1t + a), then you would have (m/s)(s) + (m/s2) which = (m) + (m/s2), which doesn't work.