answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nasty-shy [4]
2 years ago
13

A screw-jack used to lift a bus is a

Physics
1 answer:
Gekata [30.6K]2 years ago
3 0
Second order lever broski
You might be interested in
In an attempt to impress its friends, an acrobatic beetle runs and jumps off the bottom step of a flight of stairs. The step is
Aleks04 [339]

Answer:

0.3677181864 m

Explanation:

u = Velocity = 1.5 m/s

\theta = Angle = 20°

y = -20 cm

Velocity components

u_x=ucos\theta\\\Rightarrow u_x=1.5cos20\\\Rightarrow u_x=1.40953\ m/s

u_y=usin\theta\\\Rightarrow u_y=1.5sin20\\\Rightarrow u_y=0.51303\ m/s

Acceleration components

a_x=0

a_y=-9.81\ m/s^2

y=u_yt+\dfrac{1}{2}a_yt^2\\\Rightarrow -0.2=0.51303\times t+\dfrac{1}{2}\times -9.81t^2\\\Rightarrow 4.905t^2-0.51303t-0.2=0

t=\frac{-\left(-0.51303\right)+\sqrt{\left(-0.51303\right)^2-4\cdot \:4.905\left(-0.2\right)}}{2\cdot \:4.905}, \frac{-\left(-0.51303\right)-\sqrt{\left(-0.51303\right)^2-4\cdot \:4.905\left(-0.2\right)}}{2\cdot \:4.905}\\\Rightarrow t=0.26088, -0.15629

Time taken is 0.26088 seconds

x=u_xt+\dfrac{1}{2}a_xt^2\\\Rightarrow x=1.40953\times 0.26088\\\Rightarrow x=0.3677181864\ m

The distance the beetle travels on the ground is 0.3677181864 m

6 0
2 years ago
A pendulum is made of a small sphere of mass 0.250 kg attached to a lightweight string 1.20 m in length. As the pendulum swings
forsale [732]

Answer:v=2 m/s

Explanation:

Given

Length of string L=1.2 m

mass of pendulum m=0.25 kg

maximum inclination with vertical \theta =34

vertical Rise of Pendulum from its mean position  is given by

\Delta h=L(1-\cos \theta )

Conserving Energy at top and bottom point

Potential Energy of sphere is converted into kinetic energy of sphere

mgL(1-\cos \theta )=\frac{mv^2}{2}

v=\sqrt{2gL(1-\cos \theta )}

v=\sqrt{2\times 9.8\times 1.2(1-\cos 34)}

v=\sqrt{4.021}

v=2 m/s

5 0
2 years ago
Un tubo de acero de 40000 kilómetros forma un anillo que se ajusta bien a la circunferencia de la tierra. Imagine que las person
Darina [25.2K]

Answer:

82.76m

Explanation:

In order to find the distance of the steel ring to the ground, when its temperature has raised by 1°C, you first calculate the radius of the steel tube before its temperature increases.

You use the formula for the circumference of the steel ring:

C=2\pi r    (1)

C: circumference of the ring = 40000 km = 4*10^7m (you assume the circumference is the length of the steel tube)

you solve for r in the equation (1):

r=\frac{C}{2\pi}=\frac{4*10^7m}{2\pi}=6,366,197.724m

Next, you use the following formula to calculate the change in the length of the tube, when its temperature increases by 1°C:

L=Lo[1+\alpha \Delta T]         (2)

L: final length of the tube = ?

Lo: initial length of the tube = 4*10^7m

ΔT = change in the temperature of the steel tube = 1°C

α: thermal coefficient expansion of steel = 13*10^-6 /°C

You replace the values of the parameters in the equation (2):

L=(4*10^7m)(1+(13*10^{-6}/ \°C)(1\°C))=40,000,520m

With the new length of the tube, you can calculate the radius of a ring formed with the tube. You again solve the equation (1) for r:

r'=\frac{C}{2\pi}=\frac{40,000,520m}{2\pi}=6,366,280.484m

Finally, you compare both r and r' radius:

r' - r = 6,366,280.484m - 6,366,197.724m = 82.76m

Hence, the distance to the ring from the ground is 82.76m

4 0
2 years ago
What is the total energy q released in a single fusion reaction event for the equation given in the problem introduction? use c2
kkurt [141]

Answer:

4.3\cdot 10^{-12} J

Explanation:

The fusion reaction in this problem is

4^1_1H \rightarrow ^4_2He +2e^+

The total energy released in the fusion reaction is given by

\Delta E = c^2 \Delta m

where

c=3.0\cdot 10^8 m/s is the speed of light

\Delta m is the mass defect, which is the mass difference between the mass of the reactants and the mass of the products

For this fusion reaction we have:

m(^1_1H)=1.007825u is the mass of one nucleus of hydrogen

m(^4_2 He)=4.002603u is the mass of one nucleus of helium

So the mass defect is:

\Delta m =4m(^1_1 H)-m(^4_2 He)=4(1.007825u)-4.002603u=0.028697u

The conversion factor between atomic mass units and kilograms is

1u=1.66054\cdot 10^{-27}kg

So the mass defect is

\Delta m =(0.028697)(1.66054\cdot 10^{-27})=4.765\cdot 10^{-29}kg

And so, the energy released is:

\Delta E=(3.0\cdot 10^8)^2(4.765\cdot 10^{-29})=4.3\cdot 10^{-12} J

6 0
2 years ago
What is the y component of a vector defined as 12.2m at 81.5°?
sergejj [24]

Answer:

Explanation:

This is a displacement vector since it is defined in terms of distance (meters, to be exact). The way you find the y-component is

V_y=Vsin\theta which says that you multiply the magnitude of the vector (its length) by the sin of the direction (the angle):

V_y=12.2sin(81.5) and get

V_y=12.1 m

3 0
2 years ago
Other questions:
  • A top of rotational inertia 4.0 kg m2 receives a torque of 2.4 nm from a physics professor. the angular acceleration of the body
    12·1 answer
  • In the example pictured, the soda bottle would act as the?
    6·2 answers
  • A helicopter is traveling at 86.0 km/h at an angle of 35° to the ground. What is the value of Ax? Round your answer to the neare
    9·2 answers
  • A transverse wave on a string has an amplitude A. A tiny spot on the string is colored red. As one cycle of the wave passes by,
    7·1 answer
  • A person wants to lose weight by "pumping iron". The person lifts an 80 kg weight 1 meter. How many times must this weight be li
    14·1 answer
  • The weight of spaceman Speff at the surface of planet X, solely due to its gravitational pull, is 389 N. If he moves to a distan
    12·1 answer
  • When your sled starts down from the top of a hill, it hits a frictionless ice slick that extends all the way down the hill. At t
    10·1 answer
  • Suppose you increase your walking speed from 1 m/s to 3 m/s in a period of 1 s. What is your acceleration?
    9·1 answer
  • The electric field of a charge is defined by the force on what kind of particle?
    15·1 answer
  • To overcome an object's inertia, it must be acted upon by __________. A. gravity B. energy C. force D. acceleration
    5·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!