Answer:
Part A : E =
ε₀ Q₁/R₁² Volt/meter
Part B : V =
ε₀ Q₁/R₁ Volt
Explanation:
Given that,
Charge distributed on the sphere is Q₁
The radius of sphere is R
₁
The electric potential at infinity is 0
<em>Part A</em>
The space around a charge in which its influence is felt is known in the electric field. The strength at any point inside the electric field is defined by the force experienced by a unit positive charge placed at that point.
If a unit positive charge is placed at the surface it experiences a force according to the Coulomb law is given by
F =
ε₀ Q₁/R₁²
Then the electric field at that point is
E = F/1
E =
ε₀ Q₁/R₁² Volt/meter
Part B
The electric potential at a point is defined as the amount of work done in moving a unit positive charge from infinity to that point against electric forces.
Thus, the electric potential at the surface of the sphere of radius R₁ and charge distribution Q₁ is given by the relation
V =
ε₀ Q₁/R₁ Volt
Answer:
Finally current will be
i = 0.35 A
Explanation:
As we know that power of the bulb is given by the formula

now we have

R = 240 ohm
so we have


now the current in the bulb is given as


now when length of the filament is double
so the resistance of the wire also gets double
so we have



now the current in the bulb is given as



Answer:
- 3 meter
Explanation:
A dog has started motion from +3 meter. ...(Given)
∴ maximum positive distance = + 3 meter
Magnitude of distance = 3
Maximum negative distance = (-) (magnitude of distance)
Maximum negative distance = (-) (3)
Maximum negative distance = -3 meter
Hence, maximum negative distance is -3 meter.
Kinetic energy is calculated through the equation,
KE = 0.5mv²
At initial conditions,
m₁: KE = 0.5(0.28 kg)(0.75 m/s)² = 0.07875 J
m₂ : KE = 0.5(0.45 kg)(0 m/s)² = 0 J
Due to the momentum balance,
m₁v₁ + m₂v₂ = (m₁ + m₂)(V)
Substituting the known values,
(0.29 kg)(0.75 m/s) + (0.43 kg)(0 m/s) = (0.28 kg + 0.43 kg)(V)
V = 0.2977 m/s
The kinetic energy is,
KE = (0.5)(0.28 kg + 0.43 kg)(0.2977 m/s)²
KE = 0.03146 J
The difference between the kinetic energies is 0.0473 J.
Answer:
b. 9.5°C
Explanation:
= Mass of ice = 50 g
= Initial temperature of water and Aluminum = 30°C
= Latent heat of fusion = 
= Mass of water = 200 g
= Specific heat of water = 4186 J/kg⋅°C
= Mass of Aluminum = 80 g
= Specific heat of Aluminum = 900 J/kg⋅°C
The equation of the system's heat exchange is given by

The final equilibrium temperature is 9.50022°C