Answer:
U = 12,205.5 J
Explanation:
In order to calculate the internal energy of an ideal gas, you take into account the following formula:
(1)
U: internal energy
R: ideal gas constant = 8.135 J(mol.K)
n: number of moles = 10 mol
T: temperature of the gas = 100K
You replace the values of the parameters in the equation (1):

The total internal energy of 10 mol of Oxygen at 100K is 12,205.5 J
Answer:
What is u should know it bc u should answered it already
Explanation:
Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km
Answer:
I = 2 kgm^2
Explanation:
In order to calculate the moment of inertia of the door, about the hinges, you use the following formula:
(1)
I: moment of inertia of the door
α: angular acceleration of the door = 2.00 rad/s^2
τ: torque exerted on the door
You can calculate the torque by using the information about the Force exerted on the door, and the distance to the hinges. You use the following formula:
(2)
F: force = 5.00 N
d: distance to the hinges = 0.800 m
You replace the equation (2) into the equation (1), and you solve for α:

Finally, you replace the values of all parameters in the previous equation for I:

The moment of inertia of the door around the hinges is 2 kgm^2